Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Bioprint ; 9(1): 635, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844243

RESUMO

181Biofabrication approaches, such as three-dimensional (3D) bioprinting of hydrogels, have recently garnered increasing attention, especially in the construction of 3D structures that mimic the complexity of tissues and organs with the capacity for cytocompatibility and post-printing cellular development. However, some printed gels show poor stability and maintain less shape fidelity if parameters such as polymer nature, viscosity, shear-thinning behavior, and crosslinking are affected. Therefore, researchers have incorporated various nanomaterials as bioactive fillers into polymeric hydrogels to address these limitations. Carbon-family nanomaterials (CFNs), hydroxyapatites, nanosilicates, and strontium carbonates have been incorporated into printed gels for application in various biomedical fields. In this review, following the compilation of research publications on CFNs-containing printable gels in various tissue engineering applications, we discuss the types of bioprinters, the prerequisites of bioink and biomaterial ink, as well as the progress and challenges of CFNs-containing printable gels in this field.

2.
Gels ; 8(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36547349

RESUMO

Growth factors play essential roles as signaling molecules in pulp regeneration. We investigated the effect of a hyaluronic acid (HA)-collagen hybrid hydrogel with controlled release of fibroblast growth factor (FGF)-2 and platelet-derived growth factor (PDGF)-BB on human pulp regeneration. The cell interaction and cytotoxicity of the HA-collagen hybrid hydrogel, the release kinetics of each growth factor, and the effects of the released growth factors on pulp cell proliferation were examined. The vitality of pulp cells was maintained. The amounts of FGF-2 and PDGF-BB released over 7 days were 68% and 50%, respectively. Groups with a different concentration of growth factor (FGF-2: 100, 200, 500, and 1000 ng/mL; PDGF-BB: 10, 50, 100, 200, and 500 ng/mL) were experimented on days 1, 3, 5, and 7. Considering FGF-2 concentration, significantly increased pulp cell proliferation was observed on days 1, 3, 5, and 7 in the 100 ng/mL group and on days 3, 5, and 7 in the 200 ng/mL group. In the case of PDGF-BB concentration, significantly increased pulp cell proliferation was observed at all four time points in the 100 ng/mL group and on days 3, 5, and 7 in the 50, 200, and 500 ng/mL groups. This indicates that the optimal concentration of FGF-2 and PDGF-BB for pulp cell proliferation was 100 ng/mL and that the HA-collagen hybrid hydrogel has potential as a controlled release delivery system for FGF-2 and PDGF-BB.

5.
Commun Biol ; 5(1): 1270, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402892

RESUMO

Here we show that intradermal injection of keratin promotes hair growth in mice, which results from extracellular interaction of keratin with hair forming cells. Extracellular application of keratin induces condensation of dermal papilla cells and the generation of a P-cadherin-expressing cell population (hair germ) from outer root sheath cells via keratin-mediated microenvironmental changes. Exogenous keratin-mediated hair growth is reflected by the finding that keratin exposure from transforming growth factor beta 2 (TGFß2)-induced apoptotic outer root sheath cells appears to be critical for dermal papilla cell condensation and P-cadherin-expressing hair germ formation. Immunodepletion or downregulation of keratin released from or expressed in TGFß2-induced apoptotic outer root sheath cells negatively influences dermal papilla cell condensation and hair germ formation. Our pilot study provides an evidence on initiating hair regeneration and insight into the biological function of keratin exposed from apoptotic epithelial cells in tissue regeneration and development.


Assuntos
Proteínas do Citoesqueleto , Queratinas , Camundongos , Animais , Projetos Piloto , Cabelo , Caderinas
6.
Tissue Eng Regen Med ; 19(4): 739-754, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35532736

RESUMO

BACKGROUND: As stem cells are considered a promising cell source for tissue engineering, many culture strategies have been extensively studied to generate in vitro stem cell-based tissue constructs. However, most approaches using conventional tissue culture plates are limited by the lack of biological relevance in stem cell microenvironments required for neotissue formation. In this study, a novel perfusion rotating wall vessel (RWV) bioreactor was developed for mass-production of stem cell-based 3D tissue constructs. METHODS: An automated RWV bioreactor was fabricated, which is capable of controlling continuous medium perfusion, highly efficient gas exchange with surrounding air, as well as low-intensity pulsed ultrasound (LIPUS) stimulation. Embryonic stem cells encapsulated in alginate/gelatin hydrogel were cultured in the osteogenic medium by using our bioreactor system. Cellular viability, growth kinetics, and osteogenesis/mineralization were thoroughly evaluated, and culture media were profiled at real time. The in vivo efficacy was examined by a rabbit cranial defect model. RESULTS: Our bioreactor successfully maintained the optimal culture environments for stem cell proliferation, osteogenic differentiation, and mineralized tissue formation during the culture period. The mineralized tissue constructs produced by our bioreactor demonstrated higher void filling efficacy in the large bone defects compared to the group implanted with hydrogel beads only. In addition, the LIPUS modules mounted on our bioreactor successfully reached higher mineralization of the tissue constructs compared to the groups without LIPUS stimulation. CONCLUSION: This study suggests an effective biomanufacturing strategy for mass-production of implantable mineralized tissue constructs from stem cells that could be applicable to future clinical practice.


Assuntos
Osteogênese , Engenharia Tecidual , Animais , Reatores Biológicos , Hidrogéis , Osteogênese/fisiologia , Perfusão , Coelhos
7.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948063

RESUMO

Traumatic injury of the oral cavity is atypical and often accompanied by uncontrolled bleeding and inflammation. Injectable hydrogels have been considered to be promising candidates for the treatment of oral injuries because of their simple formulation, minimally invasive application technique, and site-specific delivery. Fibrinogen-based hydrogels have been widely explored as effective materials for wound healing in tissue engineering due to their uniqueness. Recently, an injectable foam has taken the spotlight. However, the fibrin component of this biomaterial is relatively stiff. To address these challenges, we created keratin-conjugated fibrinogen (KRT-FIB). This study aimed to develop a novel keratin biomaterial and assess cell-biomaterial interactions. Consequently, a novel injectable KRT-FIB hydrogel was optimized through rheological measurements, and its injection performance, swelling behavior, and surface morphology were investigated. We observed an excellent cell viability, proliferation, and migration/cell-cell interaction, indicating that the novel KRT-FIB-injectable hydrogel is a promising platform for oral tissue regeneration with a high clinical applicability.


Assuntos
Materiais Biocompatíveis/farmacologia , Fibrinogênio/farmacologia , Queratinas Específicas do Cabelo/farmacologia , Cicatrização , Materiais Biocompatíveis/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Fibrinogênio/química , Humanos , Hidrogéis , Injeções , Queratinas Específicas do Cabelo/química , Porosidade , Regeneração , Reologia , Viscosidade
8.
ACS Omega ; 6(49): 33511-33522, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34926900

RESUMO

Biodegradable cellular and acellular scaffolds have great potential to regenerate damaged tissues or organs by creating a proper extracellular matrix (ECM) capable of recruiting endogenous cells to support cellular ingrowth. However, since hydrogel-based scaffolds normally degrade through surface erosion, cell migration and ingrowth into scaffolds might be inhibited early in the implantation. This could result in insufficient de novo tissue formation in the injured area. To address these challenges, continuous and microsized strand-like networks could be incorporated into scaffolds to guide and recruit endogenous cells in rapid manner. Fabrication of such microarchitectures in scaffolds is often a laborious and time-consuming process and could compromise the structural integrity of the scaffold or impact cell viability. Here, we have developed a fast single-step approach to fabricate colloidal hydrogels, which are made up of randomly packed human serum albumin-based photo-cross-linkable microparticles with continuous internal networks of microscale voids. The human serum albumin conjugated with methacrylic groups were assembled to microsized aggregates for achieving unique porous structures inside the colloidal gels. The albumin hydrogels showed tunable mechanical properties such as elastic modulus, porosity, and biodegradability, providing a suitable ECM for various cells such as cardiomyoblasts and endothelial cells. In addition, the encapsulated cells within the hydrogel showed improved cell retention and increased survivability in vitro. Microporous structures of the colloidal gels can serve as a guide for the infiltration of host cells upon implantation, achieving rapid recruitment of hematopoietic cells and, ultimately, enhancing the tissue regeneration capacity of implanted scaffolds.

9.
ACS Omega ; 6(42): 28307-28315, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34723027

RESUMO

Despite advances in the bio-tissue engineering area, the technical basis to directly load hydrophobic drugs on chitosan (CTS) electrospun nanofibers (ENs) has not yet been fully established. In this study, we fabricated CTS ENs by using an electrospinning (ELSP) system, followed by surface modification using succinyl-beta-cyclodextrin (ß-CD) under mild conditions. The ß-CD-modified CTS (ßCTS) ENs had slightly increased hydrophobicity compared to pristine CTS ENs as well as decreased residual amine content on the surface. Through FTIR spectroscopy and thermogravimetric analysis (TGA), we characterized the surface treatment physiochemically. In the drug release test, we demonstrated the stable and sustained release of a hydrophobic drug (e.g., dexamethasone) loaded on ß-CD ENs. During in vitro biocompatibility assessments, the grafting of ß-CD was shown to not reduce cell viability compared to pristine CTS ENs. Additionally, cells proliferated well on ß-CD ENs, and this was confirmed by F-actin fluorescence staining. Overall, the material and strategies developed in this study have the potential to load a wide array of hydrophobic drugs. This could be applied as a drug carrier for a broad range of tissue engineering applications.

10.
Polymers (Basel) ; 12(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348811

RESUMO

Hydrogel-based scaffolds have been widely used to fabricate artificial tissues capable of replacing tissues and organs. However, several challenges inherent in fabricating tissues of large size and complex morphology using such scaffolds while ensuring cell viability remain. To address this problem, we synthesized gelatin methacryloyl (GelMA) based bioink with cells for fabricating a scaffold with superior characteristics. The bioink was grafted onto a Z-stacking bioprinter that maintained the cells at physiological temperature during the printing process, without exerting any physical pressure on the cells. Various parameters, such as the bioink composition and light exposure time, were optimized. The printing accuracy of the scaffolds was evaluated using photorheological studies. The internal morphology of the scaffolds at different time points was analyzed using electron microscopy. The Z-stacked scaffolds were fabricated using high-speed printing, with the conditions optimized to achieve high model reproducibility. Stable adhesion and high proliferation of cells encapsulated within the scaffold were confirmed. We introduced various strategies to improve the accuracy and reproducibility of Z-stack GelMA bioprinting while ensuring that the scaffolds facilitated cell adhesion, encapsulation, and proliferation. Our results demonstrate the potential of the present method for various applications in tissue engineering.

11.
Dent Traumatol ; 36(1): 58-68, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31050380

RESUMO

BACKGROUND/AIM: Various types of storage media have been investigated to preserve avulsed teeth. However, the efficacies of storage media mainly focus on the aspect of cell viability. The aim of this study was to evaluate and compare the gene expression profiles of human periodontal ligament cells preserved in Hank's balanced salt solution (HBSS) and milk over different storage durations. MATERIAL AND METHODS: Human periodontal ligament cells were cultured and preserved in HBSS and milk for 3 and 6 hours. Next, total RNA was isolated. QuantSeq 3' mRNA-Sequencing was used to examine differences in gene expression in HBSS- and milk-grown periodontal ligament cells. Bioinformatics analysis was also performed to predict the function of the differentially expressed genes. RESULTS: The number of differentially expressed genes shared among all groups was 101. In gene set enrichment analysis, the shared differentially expressed genes in HBSS and milk were associated with the TNF-α signaling pathway (P = 1.07E-7 ). Seven hallmark gene sets were also identified in HBSS. Moreover, hallmark gene sets associated with hypoxia (P = 7.26E-5 ) and apoptosis (P = 4.06E-4 ) were identified in HBSS. In milk, 10 hallmark gene sets along with gene sets for inflammatory response (P = 6.87E-3 ) were identified. CONCLUSIONS: Compared to those in milk, genes in HBSS were differentially expressed with increasing storage duration, suggesting that diverse and different gene expression may be involved in HBSS and milk. However, a more detailed functional analysis of these differentially expressed genes in storage solutions should be performed in the future.


Assuntos
Leite , Soluções para Preservação de Órgãos , Ligamento Periodontal , Avulsão Dentária , Transcriptoma , Animais , Sobrevivência Celular , Células Cultivadas , Humanos , Soluções Isotônicas , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo
12.
J Endod ; 46(1): 74-80, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31843129

RESUMO

INTRODUCTION: Histidine-tryptophan-ketoglutarate (HTK) is a preservation solution used for organ transplantation. The physiological pH and osmolality of this solution are known to facilitate cell proliferation and cell membrane stabilization. The purpose of the present study was to investigate the efficacy of several concentrations of HTK solution as a storage medium for avulsed teeth. METHODS: Cultured human periodontal ligament cells were stored in different concentrations of HTK solutions. After 1, 3, 6, 12, 24, 48, and 72 hours, cell viability was assessed using the Cell-Counting Kit-8 (Dojindo Molecular Technologies, Kumamoto, Japan) and LIVE/DEAD (Invitrogen, Carlsbad, CA) assay. Cell response of the most effective concentrations of HTK solution were further analyzed by gene expression profiling, and their cell viability was compared with other storage media. RESULTS: The highest cell viability was observed in 50% HTK solution in various concentrations of HTK solution (P < .05). In periodontal ligament cells stored in 50% HTK solution for 3 hours, the expression of genes related to angiogenesis, the inflammatory response, and cell proliferation was increased compared with the control. Compared with other storage media, the highest cell viability was observed in 50% HTK solution. CONCLUSIONS: Our study suggests that 50% HTK solution containing cell culture medium represents a suitable storage medium for avulsed teeth.


Assuntos
Soluções para Preservação de Órgãos , Avulsão Dentária , Glucose , Glutationa , Humanos , Insulina , Manitol , Preservação de Órgãos , Cloreto de Potássio , Procaína
13.
Sci Technol Adv Mater ; 20(1): 826-836, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31489055

RESUMO

In an aging society, bone disorders such as osteopenia, osteoporosis, and degenerative arthritis cause serious public health problems. In order to solve these problems, researchers continue to develop therapeutic agents, increase the efficacy of developed therapeutic agents, and reduce side effects. Gold nanoparticles (GNPs) are widely used in tissue engineering applications as biosensors, drug delivery carriers, and bioactive materials. Their special surface property enables easy conjugation with ligands including functional groups such as thiols, phosphines, and amines. This creates an attractive advantage to GNPs for use in the bone tissue engineering field. However, GNPs alone are limited in their biological effects. In this study, we used thiol-PEG-vitamin D (SPVD) to conjugate vitamin D, an essential nutrient critical for maintaining normal skeletal homeostasis, to GNPs. To characterize vitamin D-conjugated GNPs (VGNPs), field emission transmission electron microscopy, energy dispersive X-ray spectroscopy, dynamic light scattering, and ultraviolet/visible absorption analysis were carried out. The developed VGNPs were well bound through the thiol groups between GNPs and vitamin D, and were fabricated in size of 60 nm. Moreover, to demonstrate VGNPs osteogenic differentiation effect, various assays were carried out through cell viability test, alkaline phosphatase assay, calcium deposition assay, real-time polymerase chain reaction, and immunofluorescence staining. As a result, the fabricated VGNPs were found to effectively enhance osteogenic differentiation of human adipose-derived stem cells (hADSCs) in vitro. Based on these results, VGNPs can be utilized as functional nanomaterials for bone regeneration in the tissue engineering field.

14.
Mar Drugs ; 17(4)2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31027308

RESUMO

The gelatin extracted from mammals of porcine and bovine has been prominently used in pharmaceutical, medical, and cosmetic products. However, there have been some concerns for their usage due to religious, social and cultural objections, and animal-to-human infectious disease. Recently, gelatin from marine by-products has received growing attention as an alternative to mammalian gelatin. In this study, we demonstrate the formation of nanogels (NGs) using fish gelatin methacryloyl (GelMA) and their application possibility to the drug delivery system. The fabrication of fish GelMA NGs is carried out by crosslinking through the photopolymerization of the methacryloyl substituent present in the nanoemulsion droplets, followed by purification and redispersion. There were different characteristics depending on the aqueous phase in the emulsion and the type of solvent used in redispersion. The PBS-NGs/D.W., which was prepared using PBS for the aqueous phase and D.W. for the final dispersion solution, had a desirable particle size (<200 nm), low PdI (0.16), and high drug loading efficiency (77%). Spherical NGs particles were observed without aggregation in TEM images. In vitro release tests of doxorubicin (DOX)-GelMA NGs showed the pH-dependent release behavior of DOX. Also, the MTT experiments demonstrated that DOX-GelMA NGs effectively inhibited cell growth, while only GelMA NGs exhibit higher percentages of cell viability. Therefore, the results suggest that fish GelMA NGs have a potential for nano-carrier as fine individual particles without the aggregation and cytotoxicity to deliver small-molecule drugs.


Assuntos
Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Gelatina/química , Nanopartículas/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Peixes , Gelatina/síntese química , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Células NIH 3T3 , Nanopartículas/administração & dosagem
15.
Mater Sci Eng C Mater Biol Appl ; 100: 949-958, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30948131

RESUMO

Over the past few decades, titanium (Ti) implants have been widely used to repair fractured bones. To promote osteogenesis, immobilization of osteoinductive agents, such as recombinant human bone morphogenic protein-2 (rhBMP2), onto the Ti surface is required. In this study, we prepared rhBMP2 immobilized on glycidyl methacrylate (GMA) deposited Ti surface through initiated chemical vapor deposition (iCVD) technique. After preparation, the bio-functionalized Ti surface was characterized by physicochemical analysis. For in vitro analysis, the developed Ti was evaluated by cell proliferation, alkaline phosphatase activity, calcium deposition, and real-time polymerase chain reaction to verify their osteogenic activity against human adipose-derived stem cells (hASCs). The GMA deposited Ti surface was found to effectively immobilize a large dose of rhBMP2 as compared to untreated Ti. Additionally, rhBMP2 immobilized on Ti showed significantly enhanced osteogenic differentiation and increased calcium deposition with nontoxic cell viability. These results clearly confirm that our strategy may provide a simple, solvent-free strategy to prepare an osteoinductive Ti surface for bone tissue engineering applications.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Osso e Ossos/fisiologia , Proteínas Imobilizadas/farmacologia , Osteogênese/efeitos dos fármacos , Próteses e Implantes , Engenharia Tecidual/métodos , Titânio/farmacologia , Fator de Crescimento Transformador beta/farmacologia , Tecido Adiposo/citologia , Osso e Ossos/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Osteogênese/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/farmacologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Água/química
16.
Int J Nanomedicine ; 13: 7019-7031, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30464456

RESUMO

BACKGROUND: For effective bone regeneration, it is necessary to implant a biocompatible scaffold that is capable of inducing cell growth and continuous osteogenic stimulation at the defected site. Here, we suggest an injectable hydrogel system using enzymatic cross-linkable gelatin (Gel) and functionalized gold nanoparticles (GNPs). METHODS: In this work, tyramine (Ty) was synthesized on the gelatin backbone (Gel-Ty) to enable a phenol crosslinking reaction with horseradish peroxidase (HRP). N-acetyl cysteine (NAC) was attached to the GNPs surface (G-NAC) for promoting osteodifferentiation. RESULTS: The Gel-Ty hydrogels containing G-NAC (Gel-Ty/G-NAC) had suitable mechanical strength and biocompatibility to embed and support the growth of human adipose derived stem cells (hASCs) during a proliferation test for three days. In addition, G-NAC promoted osteodifferentiation both when it was included in Gel-Ty and when it was used directly in hASCs. The osteogenic effects were demonstrated by the alkaline phosphatase (ALP) activity test. CONCLUSION: These findings indicate that the phenol crosslinking reaction is suitable for injectable hydrogels for tissue regeneration and G-NAC stimulate bone regeneration. Based on our results, we suggest that Gel-Ty/G-NAC hydrogels can serve both as a biodegradable graft material for bone defect treatment and as a good template for tissue engineering applications such as drug delivery, cell delivery, and various tissue regeneration uses.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/fisiologia , Ouro/química , Hidrogéis/farmacologia , Injeções , Nanopartículas Metálicas/química , Acetilcisteína/farmacologia , Tecido Adiposo/citologia , Fosfatase Alcalina/metabolismo , Osso e Ossos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Gelatina/química , Humanos , Osteogênese/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
17.
Adv Exp Med Biol ; 1064: 73-89, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30471027

RESUMO

Graphene is a two-dimensional atomic layer of graphite, where carbon atoms are assembled in a honeycombed lattice structure. Recently, graphene family nanomaterials, including pristine graphene, graphene oxide and reduced graphene oxide, have increasingly attracted a great deal of interest from researchers in a variety of science, engineering and industrial fields because of their unique structural and functional features. In particular, extensive studies have been actively conducted in the biomedical and related fields, including multidisciplinary and emerging areas, as their stimulating effects on cell behaviors have been becoming an increasing concern. Herein, we are attempting to summarize some of recent findings in the fields of tissue regeneration concerning the graphene family nanomaterial-functionalized biomimetic scaffolds, and to provide the promising perspectives for the possible applications of graphene family nanomaterial.


Assuntos
Materiais Biomiméticos , Grafite/química , Nanoestruturas , Engenharia Tecidual , Alicerces Teciduais , Óxidos , Regeneração
18.
Biotechnol Bioeng ; 114(4): 903-914, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27775170

RESUMO

The in vitro generation of cell-based three dimensional (3D) nerve tissue is an attractive subject to improve graft survival and integration into host tissue for neural tissue regeneration or to model biological events in stem cell differentiation. Although 3D organotypic culture strategies are well established for 3D nerve tissue formation of pluripotent stem cells to study underlying biology in nerve development, cell-based nerve tissues have not been developed using human postnatal stem cells with therapeutic potential. Here, we established a culture strategy for the generation of in vitro cell-based 3D nerve tissue from postnatal stem cells from apical papilla (SCAPs) of teeth, which originate from neural crest-derived ectomesenchyme cells. A stem cell population capable of differentiating into neural cell lineages was generated during the ex vivo expansion of SCAPs in the presence of EGF and bFGF, and SCAPs differentiated into neural cells, showing neural cell lineage-related molecular and gene expression profiles, morphological changes and electrophysical property under neural-inductive culture conditions. Moreover, we showed the first evidence that 3D cell-based nerve-like tissue with axons and myelin structures could be generated from SCAPs via 3D organotypic culture using an integrated bioprocess composed of polyethylene glycol (PEG) microwell-mediated cell spheroid formation and subsequent dynamic culture in a high aspect ratio vessel (HARV) bioreactor. In conclusion, the culture strategy in our study provides a novel approach to develop in vitro engineered nerve tissue using SCAPs and a foundation to study biological events in the neural differentiation of postnatal stem cells. Biotechnol. Bioeng. 2017;114: 903-914. © 2016 Wiley Periodicals, Inc.


Assuntos
Reatores Biológicos , Papila Dentária/citologia , Tecido Nervoso/citologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Engenharia Tecidual/métodos , Adolescente , Diferenciação Celular , Criança , Humanos , Dente Molar/citologia , Esferoides Celulares/citologia
19.
Biomater Res ; 19: 6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26331077

RESUMO

BACKGROUND: Recently, postnatal stem cells from dental papilla with neural crest origin have been considered as one of potent stem cell sources in regenerative medicine regarding their multi-differentiation capacity and relatively easy access. However, almost human oral tissues have been reported to be infected by mycoplasma which gives rise to oral cavity in teeth, and mycoplasma contamination of ex-vivo cultured stem cells from such dental tissues and its effect on stem cell culture has received little attention. RESULTS: In this study, mycoplama contamination was evaluated with stem cells from apical papilla which were isolated from human third molar and premolars from various aged patients undergoing orthodontic therapy. The ex-vivo expanded stem cells from apical papilla were found to express stem cell markers such as Stro-1, CD44, nestin and CD133, but mycoplama contamination was detected in almost all cell cultures of the tested 20 samples, which was confirmed by mycoplasma-specific gene expression and fluorescence staining. Such contaminated mycoplasma could be successfully eliminated using elimination kit, and proliferation test showed decreased proliferation activity in mycoplasma-contaminated cells. After elimination of contaminated mycoplasma, stem cells from apical papilla showed osteogenic and neural lineage differentiation under certain culture conditions. CONCLUSION: Our study proposes that the evaluation of mycoplasma contamination and elimination process might be required in the use of stem cells from apical papilla for their potent applications to tissue engineering and regenerative medicine.

20.
Nanoscale ; 7(27): 11642-51, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26098486

RESUMO

Human mesenchymal stem cells (hMSCs) have great potential as cell sources for bone tissue engineering and regeneration, but the control and induction of their specific differentiation into bone cells remain challenging. Graphene-based nanomaterials are considered attractive candidates for biomedical applications such as scaffolds in tissue engineering, substrates for SC differentiation and components of implantable devices, due to their biocompatible and bioactive properties. Despite the potential biomedical applications of graphene and its derivatives, only limited information is available regarding their osteogenic activity. This study concentrates upon the effects of reduced graphene oxide (rGO)-coated hydroxyapatite (HAp) composites on osteogenic differentiation of hMSCs. The average particle sizes of HAp and rGO were 1270 ± 476 nm and 438 ± 180 nm, respectively. When coated on HAp particulates, rGO synergistically enhanced spontaneous osteogenic differentiation of hMSCs, without hampering their proliferation. This result was confirmed by determining alkaline phosphatase activity and mineralization of calcium and phosphate as early and late stage markers of osteogenic differentiation. It is suggested that rGO-coated HAp composites can be effectively utilized as dental and orthopedic bone fillers since these graphene-based particulate materials have potent effects on stimulating the spontaneous differentiation of MSCs and show superior bioactivity and osteoinductive potential.


Assuntos
Técnicas de Cultura de Células , Durapatita/química , Grafite/química , Células-Tronco Mesenquimais/citologia , Óxidos/química , Fosfatase Alcalina/química , Antraquinonas/química , Materiais Biocompatíveis/química , Cálcio/química , Diferenciação Celular , Proliferação de Células , Coloides/química , Humanos , Microscopia Eletrônica de Varredura , Nanocompostos/química , Nanopartículas/química , Osteogênese , Tamanho da Partícula , Fosfatos/química , Engenharia Tecidual/métodos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...