Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Trauma ; 50(2): 213-22, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11242284

RESUMO

BACKGROUND: In response to inflammation, endothelial cytoskeleton rearrangement, cell contraction, and intercellular gap formation contribute to a loss of capillary barrier integrity and resultant interstitial edema formation. The intracellular signals controlling these events are thought to be dependent on intracellular calcium concentration ([Ca2+]i). We hypothesized that, in human pulmonary microvascular endothelial cells, a thrombin-induced increase in permeability to albumin would be dependent on Ca2+i and subsequent actin cytoskeleton rearrangements. METHODS: Human lung microvascular endothelial cells, grown on 0.4 micromol/L pore membranes, were activated with 10 nmol/L human thrombin in Hank's balanced salt solution/0.5% fetal bovine serum. Select cultures were pretreated (45 minutes) with 4 micromol Fura-2/AM to chelate Ca2+i. Permeability was assessed as diffusion of bovine serum albumin/biotin across the monolayer. Similarly treated cells were stained with rhodamine-phalloidin to demonstrate actin cytoskeletal morphology. Separately, cells loaded 2 micromol Fura-2/AM were assessed at OD340/380nm after thrombin exposure to detect free Ca2+i. RESULTS: Intracellular Ca2+ levels increased 15-fold (2 seconds) and fell to baseline (10 minutes) after thrombin. Permeability increased 10-fold (30 minutes), and a shift from cortical to actin stress fiber morphology was observed. Chelation of Ca2+i diminished permeability to baseline and reduced the percentage of cells exhibiting stress fiber formation. CONCLUSION: Thrombin stimulates pulmonary capillary leak by affecting the barrier function of activated pulmonary endothelial cells. These data demonstrate a thrombin-stimulated increase in monolayer permeability, and cytoskeletal F-actin stress fibers were, in part, regulated by endothelial Ca2+i. This early, transient rise in Ca2+i likely activates downstream pathways that more directly affect the intracellular endothelial structural changes that control vascular integrity.


Assuntos
Cálcio/fisiologia , Síndrome de Vazamento Capilar/fisiopatologia , Permeabilidade Capilar/fisiologia , Endotélio Vascular/citologia , Células Cultivadas , Humanos , Pulmão/citologia , Contração Muscular/fisiologia , Cadeias Leves de Miosina , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...