Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 30(10): 1235-1247.e6, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37531956

RESUMO

Targeting transcription replication conflicts, a major source of endogenous DNA double-stranded breaks and genomic instability could have important anticancer therapeutic implications. Proliferating cell nuclear antigen (PCNA) is critical to DNA replication and repair processes. Through a rational drug design approach, we identified a small molecule PCNA inhibitor, AOH1996, which selectively kills cancer cells. AOH1996 enhances the interaction between PCNA and the largest subunit of RNA polymerase II, RPB1, and dissociates PCNA from actively transcribed chromatin regions, while inducing DNA double-stranded breaks in a transcription-dependent manner. Attenuation of RPB1 interaction with PCNA, by a point mutation in RPB1's PCNA-binding region, confers resistance to AOH1996. Orally administrable and metabolically stable, AOH1996 suppresses tumor growth as a monotherapy or as a combination treatment but causes no discernable side effects. Inhibitors of transcription replication conflict resolution may provide a new and unique therapeutic avenue for exploiting this cancer-selective vulnerability.


Assuntos
Cromatina , Neoplasias , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Neoplasias/tratamento farmacológico , DNA , Replicação do DNA
2.
Cancers (Basel) ; 13(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34944938

RESUMO

Tumor tropic neural stem cells (NSCs) can improve the anti-tumor efficacy of oncovirotherapy agents by protecting them from rapid clearance by the immune system and delivering them to multiple distant tumor sites. We recently completed a first-in-human trial assessing the safety of a single intracerebral dose of NSC-delivered CRAd-Survivin-pk7 (NSC.CRAd-S-pk7) combined with radiation and chemotherapy in newly diagnosed high-grade glioma patients. The maximum feasible dose was determined to be 150 million NSC.CRAd-Sp-k7 (1.875 × 1011 viral particles). Higher doses were not assessed due to volume limitations for intracerebral administration and the inability to further concentrate the study agent. It is possible that therapeutic efficacy could be maximized by administering even higher doses. Here, we report IND-enabling studies in which an improvement in treatment efficacy is achieved in immunocompetent mice by administering multiple treatment cycles intracerebrally. The results imply that pre-existing immunity does not preclude therapeutic benefits attainable by administering multiple rounds of an oncolytic adenovirus directly into the brain.

3.
Stem Cell Res Ther ; 12(1): 205, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33761999

RESUMO

BACKGROUND: Immortalized, clonal HB1.F3.CD 21 human neural stem/progenitor cells (NSCs), loaded with therapeutic cargo prior to intraperitoneal (IP) injection, have been shown to improve the delivery and efficacy of therapeutic agents in pre-clinical models of stage III ovarian cancer. In previous studies, the distribution and efficacy of the NSC-delivered cargo has been examined; however, the fate of the NSCs has not yet been explored. METHODS: To monitor NSC tropism, we used an unconventional method of quantifying endocytosed gold nanorods to overcome the weaknesses of existing cell-tracking technologies. RESULTS: Here, we report efficient tumor tropism of HB1.F3.CD 21 NSCs, showing that they primarily distribute to the tumor stroma surrounding individual tumor foci within 3 h after injection, reaching up to 95% of IP metastases without localizing to healthy tissue. Furthermore, we demonstrate that these NSCs are non-tumorigenic and non-immunogenic within the peritoneal setting. CONCLUSIONS: Their efficient tropism, combined with their promising clinical safety features and potential for cost-effective scale-up, positions this NSC line as a practical, off-the-shelf platform to improve the delivery of a myriad of peritoneal cancer therapeutics.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Neurais , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/terapia , Peritônio
4.
Mol Ther Oncolytics ; 19: 278-282, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33251335

RESUMO

Despite improvements in surgical techniques and chemotherapy, ovarian cancer remains the most lethal gynecologic cancer. Thus, there is an urgent need for more effective therapeutics, particularly for chemo-resistant peritoneal ovarian cancer metastases. Oncolytic virotherapy represents an innovative treatment paradigm; however, for oncolytic viruses tested from the last generation of genetically engineered viruses, the therapeutic benefits have been modest. To overcome these limitations, we generated a chimeric poxvirus, CF17, through the chimerization of nine species of orthopoxviruses. Compared with its parental viruses, CF17 has demonstrated superior oncolytic characteristics. Here, we report the oncolytic potential of CF17 in ovarian cancer. Replication of CF17 and its resulting cytotoxicity were observed at multiplicities of infection (MOIs) as low as 0.001 in human and mouse cancer cell lines in vitro. Furthermore, CF17 exerted potent antitumor effects in a syngeneic mouse model of ovarian cancer at doses as low as 6 × 106 plaque-forming units. Together, these data merit further investigation of the potential use of this novel chimeric poxvirus as an effective treatment for aggressive intraperitoneal ovarian cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA