Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Pharmacogenomics J ; 18(1): 121-126, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27897267

RESUMO

The efflux pump, p-glycoprotein, controls bioavailability and excretion of pharmaceutical compounds. In the blood-brain barrier, p-glycoprotein regulates the delivery of pharmaceutical substances to the brain, influencing efficacy and side effects for some drugs notably antipsychotics. Common side effects to antipsychotics include obesity and metabolic disease. Polymorphisms in the ABCB1 gene coding for p-glycoprotein are associated with more severe side effects to neuro-pharmaceuticals as well as weight gain, indicating a potential link between p-glycoprotein function and metabolic regulation. Using microarray data analysis from 145 neurologically sound adults, this study investigated the association between body mass index (BMI) and ABCB1 expression in the frontal cortex. Increasing BMI values were associated with a statistically significantly reduced expression of ABCB1. Investigation of DNA methylation patterns in a subgroup of 52 individuals found that the methylation/expression ratios of ABCB1 were unaffected by increasing BMI values. Interestingly, the effect of BMI on ABCB1 expression appeared stronger in African Americans than in Caucasians.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Negro ou Afro-Americano/genética , Encéfalo/metabolismo , População Branca/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Adolescente , Adulto , Antipsicóticos/uso terapêutico , Barreira Hematoencefálica/metabolismo , Índice de Massa Corporal , Encéfalo/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Polimorfismo Genético/genética , Aumento de Peso/efeitos dos fármacos , Aumento de Peso/genética , Adulto Jovem
2.
Mol Psychiatry ; 23(5): 1145-1156, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28630453

RESUMO

In order to determine the impact of the epigenetic response to traumatic stress on post-traumatic stress disorder (PTSD), this study examined longitudinal changes of genome-wide blood DNA methylation profiles in relation to the development of PTSD symptoms in two prospective military cohorts (one discovery and one replication data set). In the first cohort consisting of male Dutch military servicemen (n=93), the emergence of PTSD symptoms over a deployment period to a combat zone was significantly associated with alterations in DNA methylation levels at 17 genomic positions and 12 genomic regions. Evidence for mediation of the relation between combat trauma and PTSD symptoms by longitudinal changes in DNA methylation was observed at several positions and regions. Bioinformatic analyses of the reported associations identified significant enrichment in several pathways relevant for symptoms of PTSD. Targeted analyses of the significant findings from the discovery sample in an independent prospective cohort of male US marines (n=98) replicated the observed relation between decreases in DNA methylation levels and PTSD symptoms at genomic regions in ZFP57, RNF39 and HIST1H2APS2. Together, our study pinpoints three novel genomic regions where longitudinal decreases in DNA methylation across the period of exposure to combat trauma marks susceptibility for PTSD.


Assuntos
Epigênese Genética , Transtornos de Estresse Pós-Traumáticos/genética , Adulto , Estudos de Coortes , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Predisposição Genética para Doença , Testes Genéticos/métodos , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Estudos Longitudinais , Masculino , Militares/psicologia , Estudos Prospectivos , Proteínas Repressoras , Transtornos de Estresse Pós-Traumáticos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Mol Psychiatry ; 23(6): 1496-1505, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28485403

RESUMO

Genetic variations and adverse environmental events in utero or shortly after birth can lead to abnormal brain development and increased risk of schizophrenia. γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian brain, plays a vital role in normal brain development. GABA synthesis is controlled by enzymes derived from two glutamic acid decarboxylase (GAD) genes, GAD1 and GAD2, both of which produce transcript isoforms. While the full-length GAD1 transcript (GAD67) has been implicated in the neuropathology of schizophrenia, the transcript structure of GAD1 in the human brain has not been fully characterized. In this study, with the use of RNA sequencing and PCR technologies, we report the discovery of 10 novel transcripts of GAD1 in the human brain. Expression levels of four novel GAD1 transcripts (8A, 8B, I80 and I86) showed a lifespan trajectory expression pattern that is anticorrelated with the expression of the full-length GAD1 transcript. In addition, methylation levels of two CpG loci within the putative GAD1 promoter were significantly associated with the schizophrenia-risk SNP rs3749034 and with the expression of GAD25 in dorsolateral prefrontal cortex (DLPFC). Moreover, schizophrenia patients who had completed suicide and/or were positive for nicotine exposure had significantly higher full-length GAD1 expression in the DLPFC. Alternative splicing of GAD1 and epigenetic state appear to play roles in the developmental profile of GAD1 expression and may contribute to GABA dysfunction in the PFC and hippocampus of patients with schizophrenia.


Assuntos
Glutamato Descarboxilase/genética , Esquizofrenia/genética , Adolescente , Adulto , Processamento Alternativo/genética , Autopsia , Encéfalo/metabolismo , Criança , Pré-Escolar , Metilação de DNA/genética , Feminino , Expressão Gênica/genética , Variação Genética/genética , Glutamato Descarboxilase/metabolismo , Hipocampo/metabolismo , Humanos , Recém-Nascido , Masculino , Córtex Pré-Frontal/metabolismo , Regiões Promotoras Genéticas/genética , Isoformas de RNA/genética , RNA Mensageiro/metabolismo , Esquizofrenia/metabolismo
4.
Mol Psychiatry ; 23(5): 1251-1260, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28485405

RESUMO

The role of the immune system in schizophrenia remains controversial despite numerous studies to date. Most studies have profiled expression of select genes or proteins in peripheral blood, but none have focused on the expression of canonical pathways that mediate overall immune response. The current study used a systematic genetic approach to investigate the role of the immune system in a large sample of post-mortem brain of patients with schizophrenia: RNA sequencing was performed to assess the differential expression of 561 immune genes and 20 immune pathways in dorsolateral prefrontal cortex (DLPFC) (144 schizophrenia and 196 control subjects) and hippocampus (83 schizophrenia and 187 control subjects). The effect of RNA quality on gene expression was found to be highly correlated with the effect of diagnosis even after adjustment for observable RNA quality parameters (i.e. RNA integrity), thus this confounding relationship was statistically controlled using principal components derived from the gene expression matrix. In DLPFC, 23 immune genes were found to be differentially expressed (false discovery rate <0.05), of which seven genes replicated in both directionality and at nominal significance (P<0.05) in an independent post-mortem DLPFC data set (182 schizophrenia and 212 control subjects), although notably at least five of these genes have prominent roles in pathways other than immune function and overall the effect sizes were minimal (fold change <1.1). In the hippocampus, no individual immune genes were identified to be differentially expressed, and in both DLPFC and hippocampus none of the individual immune pathways were relatively differentially expressed. Further, genomic schizophrenia risk profiles scores were not correlated with the expression of individual immune pathways or differentially expressed genes. Overall, past reports claiming a primary pathogenic role of the immune system intrinsic to the brain in schizophrenia could not be confirmed.


Assuntos
Esquizofrenia/imunologia , Esquizofrenia/patologia , Adulto , Encéfalo/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Neuroimunomodulação , Análise de Sequência com Séries de Oligonucleotídeos , Esquizofrenia/genética , Análise de Sequência de RNA
5.
Transl Psychiatry ; 7(5): e1126, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28485729

RESUMO

The histaminergic system (HS) has a critical role in cognition, sleep and other behaviors. Although not well studied in autism spectrum disorder (ASD), the HS is implicated in many neurological disorders, some of which share comorbidity with ASD, including Tourette syndrome (TS). Preliminary studies suggest that antagonism of histamine receptors 1-3 reduces symptoms and specific behaviors in ASD patients and relevant animal models. In addition, the HS mediates neuroinflammation, which may be heightened in ASD. Together, this suggests that the HS may also be altered in ASD. Using RNA sequencing (RNA-seq), we investigated genome-wide expression, as well as a focused gene set analysis of key HS genes (HDC, HNMT, HRH1, HRH2, HRH3 and HRH4) in postmortem dorsolateral prefrontal cortex (DLPFC) initially in 13 subjects with ASD and 39 matched controls. At the genome level, eight transcripts were differentially expressed (false discovery rate <0.05), six of which were small nucleolar RNAs (snoRNAs). There was no significant diagnosis effect on any of the individual HS genes but expression of the gene set of HNMT, HRH1, HRH2 and HRH3 was significantly altered. Curated HS gene sets were also significantly differentially expressed. Differential expression analysis of these gene sets in an independent RNA-seq ASD data set from DLPFC of 47 additional subjects confirmed these findings. Understanding the physiological relevance of an altered HS may suggest new therapeutic options for the treatment of ASD.


Assuntos
Transtorno do Espectro Autista/genética , Histamina/genética , Receptores Histamínicos/efeitos dos fármacos , Análise de Sequência de RNA/métodos , Síndrome de Tourette/genética , Adolescente , Adulto , Idoso , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Criança , Pré-Escolar , Cognição/fisiologia , Diagnóstico , Feminino , Estudo de Associação Genômica Ampla/métodos , Histamina/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Inflamação Neurogênica/genética , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Sono/fisiologia , Síndrome de Tourette/metabolismo , Síndrome de Tourette/fisiopatologia , Transcriptoma/genética , Adulto Jovem
6.
Transl Psychiatry ; 7(2): e1044, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28244985

RESUMO

Several studies link increasing body mass index (BMI) to cognitive decline both as a consequence of obesity per se and as a sequela of obesity-induced type 2 diabetes. Obese individuals are prone to a chronic low-grade inflammation as the metabolically active visceral fat produces proinflammatory cytokines. Animal studies indicate that these cytokines can cross the blood-brain barrier. Such crossover could potentially affect the immune system in the brain by inducing gene expression of proinflammatory genes. The relationship between obesity and neuroinflammation in the human brain is currently unknown. Therefore we aim to examine the relationship between BMI and gene expression of central inflammatory markers in the human frontal cortex. Microarray data of 141 neurologically and psychiatrically healthy individuals were obtained through the BrainCloud database. A simple linear regression analysis was performed with BMI as variable on data on IL10, IL1ß, IL6, PTGS2 (COX2) and NOS2 (iNOS). Increasing BMI is associated with a decrease in the mRNA expression of IL10 (P=0.014) and an increase in the expression of NOS2 (iNOS; P=0.040). Expressions of IL10 and NOS2 (iNOS) were negatively correlated (P<0.001). The expression of IL10 was mostly affected by individuals with BMI ⩾40. Multiple linear regression analyses with BMI, age, sex and race as variables were performed in order to identify potential confounders. In conclusion, increasing BMI could affect the IL10-mediated anti-inflammatory defense in the brain and induce iNOS-mediated inflammatory activity.


Assuntos
Lobo Frontal/metabolismo , Interleucina-10/genética , Óxido Nítrico Sintase Tipo II/genética , Obesidade/metabolismo , RNA Mensageiro/metabolismo , Magreza/metabolismo , Adolescente , Adulto , Idoso , Índice de Massa Corporal , Criança , Pré-Escolar , Ciclo-Oxigenase 2/genética , Feminino , Humanos , Lactente , Recém-Nascido , Interleucina-1beta/genética , Interleucina-6/genética , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Sobrepeso/metabolismo , Adulto Jovem
7.
Transl Psychiatry ; 6(6): e838, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27300264

RESUMO

The incidence of Alzheimer's disease (AD) is increasing. Major risk factors for AD are advancing age and diabetes. Lately, obesity has been associated with an increased risk of dementia. Obese and diabetic individuals are prone to decreased circulating levels of zinc, reducing the amount of zinc available for crucial intracellular processes. In the brain, zinc co-localizes with glutamate in synaptic vesicles, and modulates NMDA receptor activity. Intracellular zinc is involved in apoptosis and fluctuations in cytoplasmic Zn(2+) affect modulation of intracellular signaling. The ZNT and ZIP proteins participate in intracellular zinc homeostasis. Altered expression of zinc-regulatory proteins has been described in AD patients. Using microarray data from human frontal cortex (BrainCloud), this study investigates expression of the SCLA30A (ZNT) and SCLA39A (ZIP) families of genes in a Caucasian and African-American sample of 145 neurologically and psychiatrically normal individuals. Expression of ZNT3 and ZNT4 were significantly reduced with increasing age, whereas expression of ZIP1, ZIP9 and ZIP13 were significantly increased. Increasing body mass index (BMI) correlated with a significant reduction in ZNT1 expression similar to what is seen in the early stages of AD. Increasing BMI also correlated with reduced expression of ZNT6. In conclusion, we found that the expression of genes that regulate intracellular zinc homeostasis in the human frontal cortex is altered with increasing age and affected by increasing BMI. With the increasing rates of obesity throughout the world, these findings warrant continuous scrutiny of the long-term consequences of obesity on brain function and the development of neurodegenerative diseases.


Assuntos
Doença de Alzheimer/genética , Negro ou Afro-Americano/genética , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Lobo Frontal/metabolismo , Expressão Gênica/genética , Obesidade/complicações , Obesidade/genética , Fatores de Transcrição/genética , População Branca/genética , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/fisiopatologia , Índice de Massa Corporal , Proteínas de Transporte de Cátions/genética , Bases de Dados Genéticas , Feminino , Homeostase/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Pessoa de Meia-Idade , Obesidade/fisiopatologia , RNA Mensageiro/genética , Fatores de Risco , Estatística como Assunto , Zinco/metabolismo , Fator MTF-1 de Transcrição
8.
Mol Psychiatry ; 21(5): 701-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26216298

RESUMO

Neurexin 1 (NRXN1), a presynaptic cell adhesion molecule, is implicated in several neurodevelopmental disorders characterized by synaptic dysfunction including autism, intellectual disability and schizophrenia. To gain insight into NRXN1's involvement in human cortical development we used quantitative real-time PCR to examine the expression trajectories of NRXN1, and its predominant isoforms, NRXN1-α and NRXN1-ß, in prefrontal cortex from fetal stages to aging. In addition, we investigated whether prefrontal cortical expression levels of NRXN1 transcripts are altered in schizophrenia or bipolar disorder in comparison with non-psychiatric control subjects. We observed that all three NRXN1 transcripts were highly expressed during human fetal cortical development, markedly increasing with gestational age. In the postnatal dorsolateral prefrontal cortex, expression levels were negatively correlated with age, peaking at birth until ~3 years of age, after which levels declined markedly to be stable across the lifespan. NRXN1-ß expression was modestly but significantly elevated in the brains of patients with schizophrenia compared with non-psychiatric controls, whereas NRXN1-α expression was increased in bipolar disorder. These data provide novel evidence that NRXN1 expression is highest in human dorsolateral prefrontal cortex during critical developmental windows relevant to the onset and diagnosis of a range of neurodevelopmental disorders, and that NRXN1 expression may be differentially altered in neuropsychiatric disorders.


Assuntos
Envelhecimento/metabolismo , Transtorno Bipolar/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Neocórtex/crescimento & desenvolvimento , Neocórtex/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Esquizofrenia/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas de Ligação ao Cálcio , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Moléculas de Adesão de Célula Nervosa , Isoformas de Proteínas , Adulto Jovem
10.
Mol Psychiatry ; 20(9): 1057-68, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26169973

RESUMO

Accumulating data indicate that the glutamate system is disrupted in major depressive disorder (MDD), and recent clinical research suggests that ketamine, an antagonist of the N-methyl-d-aspartate (NMDA) glutamate receptor (GluR), has rapid antidepressant efficacy. Here we report findings from gene expression studies of a large cohort of postmortem subjects, including subjects with MDD and controls. Our data reveal higher expression levels of the majority of glutamatergic genes tested in the dorsolateral prefrontal cortex (DLPFC) in MDD (F21,59=2.32, P=0.006). Posthoc data indicate that these gene expression differences occurred mostly in the female subjects. Higher expression levels of GRIN1, GRIN2A-D, GRIA2-4, GRIK1-2, GRM1, GRM4, GRM5 and GRM7 were detected in the female patients with MDD. In contrast, GRM5 expression was lower in male MDD patients relative to male controls. When MDD suicides were compared with MDD non-suicides, GRIN2B, GRIK3 and GRM2 were expressed at higher levels in the suicides. Higher expression levels were detected for several additional genes, but these were not statistically significant after correction for multiple comparisons. In summary, our analyses indicate a generalized disruption of the regulation of the GluRs in the DLPFC of females with MDD, with more specific GluR alterations in the suicides and in the male groups. These data reveal further evidence that, in addition to the NMDA receptor, the AMPA, kainate and the metabotropic GluRs may be targets for the development of rapidly acting antidepressant drugs.


Assuntos
Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/psicologia , Córtex Pré-Frontal/metabolismo , Receptores de Glutamato/biossíntese , Receptores de N-Metil-D-Aspartato/metabolismo , Suicídio/psicologia , Adulto , Estudos de Casos e Controles , Transtorno Depressivo Maior/genética , Feminino , Expressão Gênica , Ácido Glutâmico/metabolismo , Humanos , Ketamina/uso terapêutico , Masculino , Receptores de Glutamato/genética , Fatores Sexuais , Transcriptoma
11.
Transl Psychiatry ; 5: e550, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25871975

RESUMO

A genome-wide association study of cognitive deficits in patients with schizophrenia in Japan found association with a missense genetic variant (rs7157599, Asn8Ser) in the delta(4)-desaturase, sphingolipid 2 (DEGS2) gene. A replication analysis using Caucasian samples showed a directionally consistent trend for cognitive association of a proxy single-nucleotide polymorphism (SNP), rs3783332. Although the DEGS2 gene is expressed in human brain, it is unknown how DEGS2 expression varies during human life and whether it is affected by psychiatric disorders and genetic variants. To address these questions, we examined DEGS2 messenger RNA using next-generation sequencing in postmortem dorsolateral prefrontal cortical tissue from a total of 418 Caucasian samples including patients with schizophrenia, bipolar disorder and major depressive disorder. DEGS2 is expressed at very low levels prenatally and increases gradually from birth to adolescence and consistently expressed across adulthood. Rs3783332 genotype was significantly associated with the expression across all subjects (F3,348=10.79, P=1.12 × 10(-)(3)), particularly in control subjects (F1,87=13.14, P=4.86 × 10(-4)). Similar results were found with rs715799 genotype. The carriers of the risk-associated minor allele at both loci showed significantly lower expression compared with subjects homozygous for the non-risk major allele and this was a consistent finding across all diagnostic groups. DEGS2 expression showed no association with diagnostic status after correcting for multiple testing (P>0.05). Our findings demonstrate that a SNP showing genome-wide association study significant association with cognition in schizophrenia is also associated with regulation of DEGS2 expression, implicating a molecular mechanism for the clinical association.


Assuntos
Transtornos Cognitivos/genética , Ácidos Graxos Dessaturases/genética , Córtex Pré-Frontal/metabolismo , RNA Mensageiro/metabolismo , Esquizofrenia/genética , Psicologia do Esquizofrênico , Adolescente , Adulto , Alelos , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Estudos de Casos e Controles , Criança , Pré-Escolar , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/psicologia , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Feminino , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Esquizofrenia/metabolismo , Adulto Jovem
12.
Transl Psychiatry ; 4: e432, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25180571

RESUMO

Anorexia nervosa (AN), bulimia nervosa (BN) and obsessive-compulsive disorder (OCD) are complex psychiatric disorders with shared obsessive features, thought to arise from the interaction of multiple genes of small effect with environmental factors. Potential candidate genes for AN, BN and OCD have been identified through clinical association and neuroimaging studies; however, recent genome-wide association studies of eating disorders (ED) so far have failed to report significant findings. In addition, few, if any, studies have interrogated postmortem brain tissue for evidence of expression quantitative trait loci (eQTLs) associated with candidate genes, which has particular promise as an approach to elucidating molecular mechanisms of association. We therefore selected single-nucleotide polymorphisms (SNPs) based on candidate gene studies for AN, BN and OCD from the literature, and examined the association of these SNPs with gene expression across the lifespan in prefrontal cortex of a nonpsychiatric control cohort (N=268). Several risk-predisposing SNPs were significantly associated with gene expression among control subjects. We then measured gene expression in the prefrontal cortex of cases previously diagnosed with obsessive psychiatric disorders, for example, ED (N=15) and OCD/obsessive-compulsive personality disorder or tics (OCD/OCPD/Tic; N=16), and nonpsychiatric controls (N=102) and identified 6 and 286 genes that were differentially expressed between ED compared with controls and OCD cases compared with controls, respectively (false discovery rate (FDR) <5%). However, none of the clinical risk SNPs were among the eQTLs and none were significantly associated with gene expression within the broad obsessive cohort, suggesting larger sample sizes or other brain regions may be required to identify candidate molecular mechanisms of clinical association in postmortem brain data sets.


Assuntos
Anorexia Nervosa/genética , Anorexia Nervosa/patologia , Bulimia Nervosa/genética , Bulimia Nervosa/patologia , Transtorno Obsessivo-Compulsivo/genética , Transtorno Obsessivo-Compulsivo/patologia , Polimorfismo de Nucleotídeo Único/genética , Transtornos de Tique/genética , Transtornos de Tique/patologia , Adolescente , Adulto , Estudos de Coortes , Feminino , Regulação da Expressão Gênica/genética , Estudos de Associação Genética , Predisposição Genética para Doença/genética , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/patologia , Locos de Características Quantitativas/genética , Valores de Referência , Adulto Jovem
14.
Mol Psychiatry ; 19(11): 1243-50, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24492349

RESUMO

The common APOE2 gene variant is neuroprotective against Alzheimer's disease (AD) and reduces risk by nearly 50%. However, the mechanisms by which APOE2 confers neuroprotection are largely unknown. Here we showed that ApoE protein abundance in human postmortem cortex follows an isoform-dependent pattern (E2>E3>E4). We also identified a unique downstream transcriptional profile determined by microarray and characterized by downregulation of long-term potentiation (LTP) related transcripts and upregulation of extracellular matrix (ECM)/integrin-related transcripts in E2 cases and corroborated this finding at the protein level by demonstrating increases in ECM collagens and laminins. In vivo studies of healthy older individuals demonstrated a unique and advantageous biomarker signature in E2 carriers. APOE2 also reduced the risk of mild cognitive impairment to AD conversion by half. Our findings suggest that ApoE2 protein abundance, coupled with its inability to bind to LDLRs, may act to increase amyloid-beta (Ab) clearance. In addition, increased ECM and reduced LTP-related expression results in diminished activity-dependent Ab secretion and/or excitotoxicity, and thus also promotes neuroprotection.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo , Adulto , Idoso , Doença de Alzheimer/diagnóstico , Biomarcadores/metabolismo , Córtex Cerebral/fisiopatologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/fisiopatologia , Colágeno/metabolismo , Progressão da Doença , Matriz Extracelular/metabolismo , Feminino , Humanos , Integrinas/metabolismo , Laminina/metabolismo , Potenciação de Longa Duração/fisiologia , Masculino , Pessoa de Meia-Idade , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Risco
15.
Mol Psychiatry ; 19(12): 1258-66, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24322206

RESUMO

Dopamine 2 receptor (DRD2) is of major interest to the pathophysiology of schizophrenia (SCZ) both as a target for antipsychotic drug action as well as a SCZ-associated risk gene. The dopamine 1 receptor (DRD1) is thought to mediate some of the cognitive deficits in SCZ, including impairment of working memory that relies on normal dorsolateral prefrontal cortex (DLPFC) function. To better understand the association of dopamine receptors with SCZ, we studied the expression of three DRD2 splice variants and the DRD1 transcript in DLPFC, hippocampus and caudate nucleus in a large cohort of subjects (~700), including patients with SCZ, affective disorders and nonpsychiatric controls (from 14th gestational week to 85 years of age), and examined genotype-expression associations of 278 single-nucleotide polymorphisms (SNPs) located in or near DRD2 and DRD1 genes. Expression of D2S mRNA and D2S/D2-long (D2L) ratio were significantly increased in DLPFC of patients with SCZ relative to controls (P<0.0001 and P<0.0001, respectively), whereas D2L, D2Longer and DRD1 were decreased (P<0.0001). Patients with affective disorders showed an opposite pattern: reduced expression of D2S (major depressive disorder, P<0.0001) and increased expression of D2L and DRD1 (bipolar disorder, P<0.0001). Moreover, SCZ-associated risk alleles at rs1079727, rs1076560 and rs2283265 predicted increased D2S/D2L expression ratio (P<0.05) in control individuals. Our data suggest that altered splicing of DRD2 and expression of DRD1 may constitute a pathophysiological mechanism in risk for SCZ and affective disorders. The association between SCZ risk-associated polymorphism and the ratio of D2S/D2L is consistent with this possibility.


Assuntos
Transtorno Bipolar/genética , Encéfalo/metabolismo , Transtorno Depressivo Maior/genética , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Esquizofrenia/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Transtorno Bipolar/metabolismo , Encéfalo/crescimento & desenvolvimento , Criança , Pré-Escolar , Estudos de Coortes , Transtorno Depressivo Maior/metabolismo , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Splicing de RNA , RNA Mensageiro/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Esquizofrenia/metabolismo , Adulto Jovem
16.
Mol Psychiatry ; 19(2): 192-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23295814

RESUMO

Dopamine- and cAMP-regulated phosphoprotein of molecular weight 32 kDa (DARPP-32 or PPP1R1B) has been of interest in schizophrenia owing to its critical function in integrating dopaminergic and glutaminergic signaling. In a previous study, we identified single-nucleotide polymorphisms (SNPs) and a frequent haplotype associated with cognitive and imaging phenotypes that have been linked with schizophrenia, as well as with expression of prefrontal cortical DARPP-32 messenger RNA (mRNA) in a relatively small sample of postmortem brains. In this study, we examined the association of expression of two major DARPP-32 transcripts, full-length (FL-DARPP-32) and truncated (t-DARPP-32), with genetic variants of DARPP-32 in three brain regions receiving dopaminergic input and implicated in schizophrenia (the dorsolateral prefrontal cortex (DLPFC), hippocampus and caudate) in a much larger set of postmortem samples from patients with schizophrenia, bipolar disorder, major depression and normal controls (>700 subjects). We found that the expression of t-DARPP-32 was increased in the DLPFC of patients with schizophrenia and bipolar disorder, and was strongly associated with genotypes at SNPs (rs879606, rs90974 and rs3764352), as well as the previously identified 7-SNP haplotype related to cognitive functioning. The genetic variants that predicted worse cognitive performance were associated with higher t-DARPP-32 expression. Our results suggest that variation in PPP1R1B affects the abundance of the splice variant t-DARPP-32 mRNA and may reflect potential molecular mechanisms implicated in schizophrenia and affective disorders.


Assuntos
Transtorno Bipolar/metabolismo , Encéfalo/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Esquizofrenia/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antipsicóticos/farmacologia , Transtorno Bipolar/genética , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Criança , Pré-Escolar , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Feminino , Feto , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética
17.
Mol Psychiatry ; 19(4): 478-85, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23528911

RESUMO

The underlying pathology of schizophrenia (SZ) is likely as heterogeneous as its symptomatology. A variety of cortical and subcortical regions, including the prefrontal cortex, have been implicated in its pathology, and a number of genes have been identified as risk factors for disease development. We used in situ hybridization (ISH) to examine the expression of 58 genes in the dorsolateral prefrontal cortex (DLPFC, comprised of Brodmann areas 9 and 46) from 19 individuals with a premorbid diagnosis of SZ and 33 control individuals. Genes were selected based on: (1) previous identification as risk factors for SZ; (2) cell type markers or (3) laminar markers. Cell density and staining intensity were compared in the DLPFC, as well as separately in Brodmann areas 9 and 46. The expression patterns of a variety of genes, many of which are associated with the GABAergic system, were altered in SZ when compared with controls. Additional genes, including C8orf79 and NR4A2, showed alterations in cell density or staining intensity between the groups, highlighting the need for additional studies. Alterations were, with only a few exceptions, limited to Brodmann area 9, suggesting regional specificity of pathology in the DLPFC. Our results agree with previous studies on the GABAergic involvement in SZ, and suggest that areas 9 and 46 may be differentially affected in the disease. This study also highlights additional genes that may be altered in SZ, and indicates that these potentially interesting genes can be identified by ISH and high-throughput image analysis techniques.


Assuntos
Regulação da Expressão Gênica/fisiologia , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/patologia , Adulto , Contagem de Células , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Neuroimagem , Neurônios/metabolismo , Córtex Pré-Frontal/patologia , Esquizofrenia/genética , Adulto Jovem
18.
Mol Psychiatry ; 16(8): 836-47, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20479757

RESUMO

Alzheimer's disease (AD) is a neurodegenerative condition characterized histopathologically by neuritic plaques and neurofibrillary tangles. The objective of this transcriptional profiling study was to identify both neurosusceptibility and intrinsic neuroprotective factors at the molecular level, not confounded by the downstream consequences of pathology. We thus studied post-mortem cortical tissue in 28 cases that were non-APOE4 carriers (called the APOE3 group) and 13 cases that were APOE4 carriers. As APOE genotype is the major genetic risk factor for late-onset AD, the former group was at low risk for development of the disease and the latter group was at high risk for the disease. Mean age at death was 42 years and none of the brains had histopathology diagnostic of AD at the time of death. We first derived interregional difference scores in expression between cortical tissue from a region relatively invulnerable to AD (primary somatosensory cortex, BA 1/2/3) and an area known to be susceptible to AD pathology (middle temporal gyrus, BA 21). We then contrasted the magnitude of these interregional differences in between-group comparisons of the APOE3 (low risk) and APOE4 (high risk) genotype groups. We identified 70 transcripts that differed significantly between the groups. These included EGFR, CNTFR, CASP6, GRIA2, CTNNB1, FKBPL, LGALS1 and PSMC5. Using real-time quantitative PCR, we validated these findings. In addition, we found regional differences in the expression of APOE itself. We also identified multiple Kyoto pathways that were disrupted in the APOE4 group, including those involved in mitochondrial function, calcium regulation and cell-cycle reentry. To determine the functional significance of our transcriptional findings, we used bioinformatics pathway analyses to demonstrate that the molecules listed above comprised a network of connections with each other, APOE, and APP and MAPT. Overall, our results indicated that the abnormalities that we observed in single transcripts and in signaling pathways were not the consequences of diagnostic plaque and tangle pathology, but preceded it and thus may be a causative link in the long molecular prodrome that results in clinical AD.


Assuntos
Doença de Alzheimer/genética , Apolipoproteína E4/genética , Expressão Gênica/genética , Predisposição Genética para Doença/genética , Transdução de Sinais/genética , Adulto , Apolipoproteína E3/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/biossíntese , Apolipoproteínas E/genética , Córtex Cerebral/metabolismo , Bases de Dados Genéticas , Feminino , Genótipo , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade
19.
Transl Psychiatry ; 1: e30, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22832604

RESUMO

Numerous genetic linkage and association reports have implicated the Disrupted-in-Schizophrenia (DISC1) gene in psychiatric illness. The Scottish family translocation, predicted to encode a C-terminus-truncated protein, suggests involvement of short isoforms in the pathophysiology of mental disorders. We recently reported complex alternative splicing patterns for the DISC1 gene and found that short isoforms are overexpressed in the brains of patients with schizophrenia and in carriers of risk-associated alleles. Investigation into the protein-protein interactions of alternative DISC1 isoforms may provide information about the functional consequences of overexpression of truncated forms in mental illness. Human embryonic kidney (HEK293) cells were transiently co-transfected with human epitope-tagged DISC1 variants and epitope-tagged NDEL1, FEZ1, GSK3ß and PDE4B constructs. Co-immunoprecipitation assays demonstrated that all truncated DISC1 variants formed complexes with full-length DISC1. Short DISC1 splice variants LΔ78, LΔ3 and Esv1 showed reduced or no binding to NDEL1 and PDE4B proteins, but fully interacted with FEZ1 and GSK3ß. The temporal expression pattern of GSK3ß in the human postmortem tissue across the lifespan closely resembled that of the truncated DISC1 variants, suggesting the possibility of interactions between these proteins in the human brain. Our results suggest that complexes of full-length DISC1 with truncated DISC1 variants may result in cellular disturbances critical to DISC1 function.


Assuntos
Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Esquizofrenia/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Processamento Alternativo/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Variação Genética , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Células HEK293 , Humanos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Ligação Proteica/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/patologia
20.
Neuroscience ; 169(3): 1071-84, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20553817

RESUMO

The brain-derived neurotrophic factor (BDNF) gene contains multiple 5' promoters which generate alternate transcripts. Previously, we found that pan-BDNF mRNA and protein are reduced in the dorsolateral prefrontal cortex (DLPFC) from patients with schizophrenia. In this study, we determined which of the four most abundant and best characterized BDNF alternate transcripts, I-IX, II-IX, IV-IX, and VI-IX are altered in schizophrenia. Using a cohort from the NIMH, USA, we found that BDNF II-IX mRNA was significantly reduced in the DLPFC of patients with schizophrenia, and we replicated this finding using a second cohort from Sydney, Australia. Moreover, we show that BDNF protein expression [including prepro ( approximately 32 kDa), pro ( approximately 28 kDa) and mature ( approximately 14 kDa) BDNF] is reduced in the DLPFC of patients with schizophrenia. We next determined the regional specificity of the BDNF mRNA reduction by measuring BDNF transcripts in the parietal cortex and hippocampus and found no significant changes. The effect of antipsychotics on BDNF alternate transcript expression was also examined and we found no relationship between BDNF mRNA expression and antipsychotic use. As schizophrenic patients are often prescribed antidepressants which can up-regulate expression of BDNF, we investigated the relationship between antidepressant treatment and BDNF transcript expression. All four BDNF transcripts were significantly up-regulated in schizophrenic patients treated with antidepressants. Moreover, we found significant reductions in BDNF transcripts II-IX and IV-IX in the parietal cortex and VI-IX in the hippocampus of patients with schizophrenia who did not have a history of treatment with antidepressants. This suggests that down-regulation of at least one out of four major BDNF transcripts occurs in various brain regions of patients with schizophrenia, particularly in the DLPFC which appears to have the most robust BDNF deficit in schizophrenia.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Encéfalo/metabolismo , RNA Mensageiro/biossíntese , Esquizofrenia/metabolismo , Adulto , Processamento Alternativo , Antidepressivos/efeitos adversos , Antipsicóticos/efeitos adversos , Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/genética , Estudos de Coortes , Regulação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Esquizofrenia/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...