Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Cancer Sci Clin Ther ; 7(1): 1-8, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38105923

RESUMO

Introduction: Epithelial Ovarian Cancer (EOC) cells express enzymes in the cholesterol biosynthetic pathway, making this pathway an attractive therapeutic target for controlling ovarian cancer. Potent small molecule inhibitors of one biosynthetic enzyme, Oxidosqualene Cyclase (OSC), have been identified, and RO 48-8071 (4'-[6-(allylmethylamino)hexyloxy]-4-bromo-2'-fluorobenzophenone fumarate) (RO), has emerged as a useful chemotherapeutic agent for breast and prostate cancer. Methods: Cell viability assays were performed to determine effects of RO 48-8071 on growth of EOC cells. Aldehyde Dehydrogenase (ALDH) assay was conducted to determine the effects of drug on reducing stem cell like properties of EOC cells. Finally, xenograft studies were performed to assess the ability of RO 48-8071 to inhibit the growth of EOC cells in vivo. Results: We found that short-term (24-48 h) administration of pharmacological doses of RO effectively reduced the viability of drug-resistant EOC cells (SK-OV-3 and OVCAR-3), as determined with sulforhodamine B colorimetric assays. In 7-day assays, nanomolar concentrations of RO effectively inhibited the growth of EOC cells. RO also suppressed ALDH activity, a marker of stem cells. Importantly, RO significantly suppressed growth of xenografts derived from EOC cells when given to mice intraperitoneally (20-40 mg kg-1 day-1) for 27 days once tumors reached 100 mm3 (controls: 336 + 60 mm3; treated: 171 + 20 mm3) with no toxicity to the experimental animals. Mechanistically, RO induced apoptosis in tumor cells in vivo as shown with immunohistochemistry. Conclusion: Cholesterol biosynthesis inhibitor RO 48-8071 is thus a novel and potent inhibitor of human EOC, including EOC stem cells.

2.
Onco Targets Ther ; 15: 23-30, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35035222

RESUMO

Tumor suppressor p53 protein (p53) plays a vital role throughout the body to conserve DNA stability and prevent cancer. Normally, wild-type p53 protein (wtp53) is either degraded or bound to a negative regulator and is inactive. When damage to DNA occurs within a cell, p53 protein is induced and causes cell cycle arrest. This gives cells a chance to repair, but if damage is too severe, cells undergo apoptosis and are rejected. Mutations in the p53 gene (mtp53) are associated with a variety of cancers and occur in 70-80% of cases of triple-negative breast cancer (TNBC). Importantly, many mutations occur in the DNA binding domain of p53 gene and the altered mutant p53 protein (mtp53) is subsequently not degraded. High levels of mtp53 protein accumulate within the cell, leading to the development of tumors. Therefore, converting mtp53 protein back into its functional wild-type conformation is a promising means by which to prevent or reverse tumor development. Herein we will briefly examine how tumor suppressor wtp53 exerts its effects, the mechanisms involved in protecting cells that undergo DNA damage and ways in which wtp53 prevents tumorigenesis. Using TNBC as an example, we will describe the use of specific compounds to reactivate mtp53 protein function by reconfiguring its structure and outline the potential benefits of mtp53 protein reactivation. We will also briefly discuss current clinical trials aimed at reactivating mtp53 protein in order to cure certain cancers. Finally, we make the recommendation that greater emphasis should be placed on testing naturally occurring compounds that are generally non-toxic to re-activate mtp53 protein and control progression of TNBC.

3.
Breast Cancer Res Treat ; 192(1): 53-63, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35037188

RESUMO

PURPOSE: Most hormone-dependent human breast cancers develop resistance to anti-hormone therapy over time. Our goal was to identify novel treatment strategies to avoid this drug resistance and thereby control hormone-dependent breast cancer. METHODS: Sulforhodamine B assays were used to measure viability of cultured human breast-cancer cells. BT-474 cell tumor xenografts in nude mice were used to evaluate tumor growth. Immunohistochemistry was used to assess estrogen-receptor and angiogenesis-marker expression, as well as apoptosis, in tumor-xenograft tissues. RESULTS: MCF-7 and BT-474 breast-cancer cells treated with either RO 48-8071 <[4'-[6-(Allylmethylamino)hexyloxy]-4-bromo-2'-fluorobenzophenone fumarate] [RO]; a small-molecule inhibitor of oxidosqualene cyclase, a key enzyme in cholesterol biosynthesis> or liquiritigenin [LQ; an estrogen receptor (ER) ß agonist] exhibited significantly reduced viability in vitro. RO + LQ treatment further significantly reduced cell viability. Administration of RO, LQ, or RO + LQ significantly inhibited growth of BT-474 tumor xenografts in vivo. RO, LQ, or RO + LQ reduced ERα but induced ER ß expression in tumor xenografts. Both compounds significantly reduced angiogenesis-marker expression and increased apoptosis in tumor xenografts; use of RO + LQ significantly enhanced the effects observed with a single agent. CONCLUSION: The ERß ligand LQ significantly enhanced the inhibition of breast-cancer cell viability and tumor-xenograft growth by RO. The anti-tumor properties of RO may in part be due to an off-target effect that reduces ERα and increases ERß, the latter of which can then interact with LQ to promote anti-proliferative effects. The RO + LQ combination may have value when considering novel treatment strategies for hormone-dependent breast cancer.


Assuntos
Benzofenonas/farmacologia , Neoplasias da Mama , Receptor beta de Estrogênio , Flavanonas/farmacologia , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Colesterol , Receptor alfa de Estrogênio , Receptor beta de Estrogênio/agonistas , Estrogênios , Feminino , Humanos , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Artigo em Inglês | MEDLINE | ID: mdl-31534364

RESUMO

BACKGROUND: Approximately 15-20% of all human breast cancers are classified as triple-negative because they lack estrogen and progesterone receptors and Her-2-neu, which are commonly targeted by chemotherapeutic drugs. New treatment strategies are therefore urgently needed to combat triple-negative breast cancers (TNBCs). Almost 80% of the triple-negative tumors express mutant p53 (mtp5), a functionally defective tumor suppressor protein. Whereas wild-type p53 (wtp53) promotes cell-cycle arrest and apoptosis and inhibits vascular endothelial growth factor-dependent angiogenesis, mtp53 fails to regulate these functions, resulting in tumor vascularization, growth, resistance to chemotherapy, and metastasis. Restoration of p53 function is therefore a promising drug-targeted strategy for suppressing TNBC metastasis. METHODS: APR-246 is a small-molecule drug that reactivates mtp53, thereby restoring p53 function. In this study, we sought to determine whether administration of APR-246, either alone or in combination with 2aG4, an antibody that targets phosphatidylserine residues on tumor blood vessels and disrupts tumor vasculature, effectively inhibits stem cell-like characteristics of tumor cells and migration in vitro, and metastasis of human mtp53-expressing TNBC cells to the lungs in mouse models. RESULTS: APR-246 reduced both the stem cell-like properties and migration of TNBC cells in vitro. In mouse models, administration of either APR-246 or 2aG4 reduced metastasis of TNBC cells to the lungs; a combination of the two diminished lung metastasis to the same extent as either agent alone. Combination treatment significantly reduced the incidence of lung metastasis compared either single agent alone. CONCLUSION: Metastasis of human mtp53-expressing TNBC cells to the lungs of nude mice is inhibited by the treatment that combines activation of mtp53 with targeting of phosphatidylserine residues on tumor blood vessels. We contend therefore that our findings strongly support the use of combination treatment involving mtp53 activation and immunotherapy in patients with TNBC.

5.
Artigo em Inglês | MEDLINE | ID: mdl-29606888

RESUMO

BACKGROUND: Between 30 and 40% of human breast cancers express a defective tumor suppressor p53 gene. Wild-type p53 tumor suppressor protein promotes cell-cycle arrest and apoptosis and inhibits vascular endothelial growth factor-dependent angiogenesis, whereas mutant p53 protein (mtp53) lacks these functions, resulting in tumor cell survival and metastasis. Restoration of p53 function is therefore a promising drug-targeted strategy for combating mtp53-expressing breast cancer. METHODS: In this study, we sought to determine whether administration of APR-246, a small-molecule drug that restores p53 function, in combination with 2aG4, an antibody that targets phosphatidylserine residues on tumor blood vessels and disrupts tumor vasculature, effectively inhibits advanced hormone-dependent breast cancer tumor growth. RESULTS: APR-246 reduced cell viability in mtp53-expressing BT-474 and T47-D human breast cancer cells in vitro, and significantly induced apoptosis in a dose-dependent manner. However, APR-246 did not reduce cell viability in MCF-7 breast cancer cells, which express wild-type p53. We next examined APR-246's anti-tumor effects in vivo using BT-474 and T47-D tumor xenografts established in female nude mice. Tumor-bearing mice were treated with APR-246 and/or 2aG4 and tumor volume followed over time. Tumor growth was more effectively suppressed by combination treatment than by either agent alone, and combination therapy completely eradicated some tumors. Immunohistochemistry analysis of tumor tissue sections demonstrated that combination therapy more effectively induced apoptosis and reduced cell proliferation in tumor xenografts than either agent alone. Importantly, combination therapy dramatically reduced the density of blood vessels, which serve as the major route for tumor metastasis, in tumor xenografts compared with either agent alone. CONCLUSION: Based on our findings, we contend that breast tumor growth might effectively be controlled by simultaneous targeting of mtp53 protein and tumor blood vessels in mtp53-expressing cancers.

6.
Artigo em Inglês | MEDLINE | ID: mdl-28744156

RESUMO

Clinical trials and studies have shown that postmenopausal women undergoing combination hormone replacement therapy containing estrogen and progestin have an increased risk of breast cancer compared with women taking estrogen or placebo alone. Using animal models, we have previously shown that synthetic progestins, including medroxyprogesterone acetate (MPA), which is widely used clinically, accelerate breast cancer tumor growth and promote metastasis. Furthermore, we have found that MPA elevates CD44 protein expression and aldehyde dehydrogenase (ALDH) activity, two markers of cancer stem cells (CSCs), and increases mammosphere formation, another hallmark of stem cells, in hormone-dependent T47-D human breast cancer cells. Herein, we show that RO 48-8071 (RO), an inhibitor of cholesterol synthesis, reduced MPA-induced CD44 protein expression in two hormone-dependent human breast cancer cell lines, T47-D and BT-474. Because we have previously shown that MPA induction of CD44 is progesterone receptor (PR) dependent, we examined RO's effects on PR protein and mRNA expressions in T47-D cells. PR mRNA levels remained unchanged after RO treatment; however, RO significantly reduced the protein expression of both PR receptor isoforms, PR-A and PR-B. Using the proteasome inhibitor MG-132, we demonstrated that RO decreases PR protein expression in T47-D cells via the proteasomal degradation pathway. Importantly, treatment of T47-D cells with RO abolished MPA-induced mammosphere formation. Based on our observations, we contend that RO may represent a novel means of preventing MPA-induced CSC expansion. RO could be used clinically to both treat and prevent hormone-dependent breast cancers, which represent the majority of human breast cancers. RO may also have clinical utility in reducing resistance to antihormone therapy.

7.
Artigo em Inglês | MEDLINE | ID: mdl-28579829

RESUMO

Clinical trials and studies have shown that combination estrogen/progestin hormone replacement therapy, but not estrogen therapy alone or placebo, increases breast cancer risk in postmenopausal women. Using animal models, we have previously shown that both natural and synthetic progestins (including medroxyprogesterone acetate [MPA], a synthetic progestin used widely in the clinical setting) accelerate the development of breast tumors in vivo and increase their metastasis to lymph nodes. Based on these observations, we have hypothesized that progestin-induced breast cancer tumor growth and metastasis may be mediated by an enrichment of the cancer stem cell (CSC) pool. In this study, we used T47-D and BT-474 hormone-responsive human breast cancer cells to examine the effects of progestin on phenotypic and functional markers of CSCs in vitro. Both natural and synthetic progestins (10 nM) significantly increased protein expression of CD44, an important CSC marker in tumor cells. MPA increased the levels of both CD44 variants v3 and v6 associated with stem cell functions. This induction of CD44 was blocked by the antiprogestin RU-486, suggesting that this process is progesterone receptor (PR) dependent. CD44 induction was chiefly progestin dependent. Because RU-486 can bind other steroid receptors, we treated PR-negative T47-DCO-Y cells with MPA and found that MPA failed to induce CD44 protein expression, confirming that PR is essential for progestin-mediated CD44 induction in T47-D cells. Further, MPA treatment of T47-D cells significantly increased the activity of aldehyde dehydrogenase (ALDH), another CSC marker. Finally, two synthetic progestins, MPA and norethindrone, significantly increased the ability of T47-D cells to form mammospheres, suggesting that enrichment of the CD44high, ALDHbright subpopulation of cancer cells induced by MPA exposure is of functional significance. Based on our observations, we contend that exposure of breast cancer cells to synthetic progestins leads to an enrichment of the CSC pool, supporting the development of progestin-accelerated tumors in vivo.

8.
Artigo em Inglês | MEDLINE | ID: mdl-28096694

RESUMO

Most breast cancer-related deaths from triple-negative breast cancer (TNBC) occur following metastasis of cancer cells and development of tumors at secondary sites. Because TNBCs lack the three receptors targeted by current chemotherapeutic regimens, they are typically treated with extremely aggressive and highly toxic non-targeted treatment strategies. Women with TNBC frequently develop metastatic lesions originating from drug-resistant residual cells and have poor prognosis. For this reason, novel therapeutic strategies that are safer and more effective are sought. Luteolin (LU) is a naturally occurring, non-toxic plant compound that has proven effective against several types of cancer. With this in mind, we conducted in vivo and in vitro studies to determine whether LU might suppress metastasis of TNBC. In an in vivo mouse metastasis model, LU suppressed metastasis of human MDA-MB-435 and MDA-MB-231 (4175) LM2 TNBC cells to the lungs. In in vitro assays, LU inhibited cell migration and viability of MDA-MB-435 and MDA-MB-231 (4175) LM2 cells. Further, LU induced apoptosis in MDA-MB-231 (4175) LM2 cells. Relatively low levels (10 µM) of LU significantly inhibited vascular endothelial growth factor (VEGF) secretion in MDA-MB-231 (4175) LM2 cells, suggesting that it has the ability to suppress a potent angiogenic and cell survival factor. In addition, migration of MDA-MB-231 (4175) LM2 cells was inhibited upon exposure to an antibody against the VEGF receptor, KDR, but not by exposure to a VEGF165 antibody. Collectively, these data suggest that the anti-metastatic properties of LU may, in part, be due to its ability to block VEGF production and KDR-mediated activity, thereby inhibiting tumor cell migration. These studies suggest that LU deserves further investigation as a potential treatment option for women with TNBC.

9.
Onco Targets Ther ; 9: 3223-32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27313468

RESUMO

Standard treatment for primary prostate cancer includes systemic exposure to chemotherapeutic drugs that target androgen receptor or antihormone therapy (chemical castration); however, drug-resistant cancer cells generally emerge during treatment, limiting the continued use of systemic chemotherapy. Patients are then treated with more toxic standard therapies. Therefore, there is an urgent need for novel and more effective treatments for prostate cancer. The cholesterol biosynthetic pathway is an attractive therapeutic target for treating endocrine-dependent cancers because cholesterol is an essential structural and functional component of cell membranes as well as the metabolic precursor of endogenous steroid hormones. In this study, we have examined the effects of RO 48-8071 (4'-[6-(allylmethylamino)hexyloxy]-4-bromo-2'-fluorobenzophenone fumarate; Roche Pharmaceuticals internal reference: RO0488071) (RO), which is an inhibitor of 2, 3-oxidosqualene cyclase (a key enzyme in the cholesterol biosynthetic pathway), on prostate cancer cells. Exposure of both hormone-dependent and castration-resistant human prostate cancer cells to RO reduced prostate cancer cell viability and induced apoptosis in vitro. RO treatment reduced androgen receptor protein expression in hormone-dependent prostate cancer cells and increased estrogen receptor ß (ERß) protein expression in both hormone-dependent and castration-resistant prostate cancer cell lines. Combining RO with an ERß agonist increased its ability to reduce castration-resistant prostate cancer cell viability. In addition, RO effectively suppressed the growth of aggressive castration-resistant human prostate cancer cell xenografts in vivo without any signs of toxicity to experimental animals. Importantly, RO did not reduce the viability of normal prostate cells in vitro. Our study is the first to demonstrate that the cholesterol biosynthesis inhibitor RO effectively suppresses growth of human prostate cancer cells. Our findings suggest that cholesterol biosynthesis inhibitors such as RO, when used in combination with commonly used chemotherapeutic drugs or ERß specific ligands, could represent a novel therapeutic approach to prevent the growth of prostate cancer tumors.

10.
Oncol Rep ; 35(2): 825-32, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26719029

RESUMO

Postmenopausal women undergoing hormone-replacement therapy containing both progestins and estrogens are at an increased risk of developing breast cancer compared with women taking estrogen alone. We recently demonstrated that medroxyprogesterone acetate, a progestin commonly used for hormone-replacement therapy, accelerates development of mammary carcinogenesis in 7,12-dimethylbenz(a)anthracene­treated Sprague-Dawley rats. Synthetic antiprogestins used to block the deleterious effects of progestins, are themselves associated with toxic side-effects. In order to circumvent this, we used the aforementioned model to identify less toxic natural compounds that may prevent the development of progestin-accelerated tumors. Luteolin, a naturally-occurring flavonoid commonly found in fruits and vegetables, has previously been shown to possess anticancer properties. In our studies, both low (1 mg/kg) and high (25 mg/kg) doses of luteolin significantly suppressed progestin-dependent increases in tumor incidence, while increasing tumor latency and reducing the occurrence of large (>300 mm3) mammary tumors. However, an intermediate dose of luteolin (10 mg/kg), while suppressing the development of large tumors, did not affect either tumor incidence or latency. Immunohistochemical analysis of tumor tissues revealed that all concentrations of luteolin (1, 10, and 25 mg/kg) significantly reduced levels of VEGF within tumors. The suppressive effects of luteolin on tumor incidence and volume, together with its ability to reduce VEGF and blood vessels, persisted even after treatment was terminated. This suggests that luteolin possesses anti­angiogenic properties which could mechanistically explain its capacity to control tumor progression. Thus luteolin may be a valuable, non-toxic, naturally-occurring anticancer compound which may potentially be used to combat progestin-accelerated mammary tumors.


Assuntos
Antineoplásicos/farmacologia , Luteolina/farmacologia , Neoplasias Mamárias Experimentais/patologia , Acetato de Medroxiprogesterona/toxicidade , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Terapia de Reposição de Estrogênios/efeitos adversos , Feminino , Imuno-Histoquímica , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/biossíntese
11.
Springerplus ; 4: 444, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26312209

RESUMO

PURPOSE: Clinical trials and epidemiological evidence have shown that combined estrogen/progestin hormone replacement therapy, but not estrogen therapy alone, increases breast cancer risk in post-menopausal women. Previously we have shown that natural and synthetic progestins, including the widely used synthetic progestin medroxyprogesterone acetate (MPA), increase production of a potent angiogenic factor, vascular endothelial growth factor (VEGF), in human breast cancer cells, potentially providing an explanation for progestin's mechanism of action. Here, we tested the effects of luteolin (LU), a flavonoid commonly found in fruits and vegetables, on inhibiting progestin-dependent VEGF induction and angiogenesis in human breast cancer cells, inhibiting stem cell-like characteristics, as well as breast cancer cell xenograft tumor growth in vivo and expression of angiogenesis markers. METHODS: Viability of both T47-D and BT-474 cells was measured using sulforhodamine B assays. Enzyme-linked immunosorbent assays were used to monitor VEGF secretion from breast cancer cells. Progestin-dependent xenograft tumor growth was used to determine LU effects in vivo. CD31 immunohistochemistry was used to determine blood-vessel density in xenograft tumors. CD44 expression, aldehyde dehydrogenase activity, and mammosphere-formation assays were used to monitor stem cell-like characteristics of breast cancer cells. RESULTS: Luteolin treatment reduced breast cancer cell viability, progestin-dependent VEGF secretion from breast cancer cells, and growth of MPA-dependent human breast cancer cell xenograft tumors in nude mice. LU treatment also decreased xenograft tumor VEGF expression and blood-vessel density. Furthermore, LU blocked MPA-induced acquisition of stem cell-like properties by breast cancer cells. CONCLUSIONS: Luteolin effectively blocks progestin-dependent human breast cancer tumor growth and the stem cell-like phenotype in human breast cancer cells.

12.
Oncol Rep ; 32(4): 1727-33, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25051231

RESUMO

Breast cancer cells express enzymes that convert cholesterol, the synthetic precursor of steroid hormones, into estrogens and androgens, which then drive breast cancer cell proliferation. In the present study, we sought to determine whether oxidosqualene cyclase (OSC), an enzyme in the cholesterol biosynthetic pathway, may be targeted to suppress progression of breast cancer cells. In previous studies, we showed that the OSC inhibitor RO 48-8071 (RO) may be a ligand which could potentially be used to control the progression of estrogen receptor-α (ERα)-positive breast cancer cells. Herein, we showed, by real-time PCR analysis of mRNA from human breast cancer biopsies, no significant differences in OSC expression at various stages of disease, or between tumor and normal mammary cells. Since the growth of hormone-responsive tumors is ERα-dependent, we conducted experiments to determine whether RO affects ERα. Using mammalian cells engineered to express human ERα or ERß protein, together with an ER-responsive luciferase promoter, we found that RO dose-dependently inhibited 17ß-estradiol (E2)-induced ERα responsive luciferase activity (IC50 value, ~10 µM), under conditions that were non-toxic to the cells. RO was less effective against ERß-induced luciferase activity. Androgen receptor (AR) mediated transcriptional activity was also reduced by RO. Notably, while ERα activity was reduced by atorvastatin, the HMG-CoA reductase inhibitor did not influence AR activity, showing that RO possesses broader antitumor properties. Treatment of human BT-474 breast cancer cells with RO reduced levels of estrogen-induced PR protein, confirming that RO blocks ERα activity in tumor cells. Our findings demonstrate that an important means by which RO suppresses hormone-dependent growth of breast cancer cells is through its ability to arrest the biological activity of ERα. This warrants further investigation of RO as a potential therapeutic agent for use against hormone-dependent breast cancers.


Assuntos
Benzofenonas/farmacologia , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor beta de Estrogênio/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Transferases Intramoleculares/antagonistas & inibidores , RNA Mensageiro/efeitos dos fármacos , Receptores Androgênicos/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Atorvastatina , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Ácidos Heptanoicos/farmacologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Transferases Intramoleculares/metabolismo , Pirróis/farmacologia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo
13.
Breast Cancer Res Treat ; 146(1): 51-62, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24878988

RESUMO

In most human breast cancers, tumor cell proliferation is estrogen dependent. Although hormone-responsive tumors initially respond to anti-estrogen therapies, most of them eventually develop resistance. Our goal was to identify alternative targets that might be regulated to control breast cancer progression. Sulforhodamine B assay was used to measure the viability of cultured human breast cancer cell lines exposed to various inhibitors. Protein expression in whole-cell extracts was determined by Western blotting. BT-474 tumor xenografts in nude mice were used for in vivo studies of tumor progression. RO 48-8071 ([4'-[6-(Allylmethylamino)hexyloxy]-4-bromo-2'-fluorobenzophenone fumarate]; RO), a small-molecule inhibitor of oxidosqualene cyclase (OSC, a key enzyme in cholesterol biosynthesis), potently reduced breast cancer cell viability. In vitro exposure of estrogen receptor (ER)-positive human breast cancer cells to pharmacological levels of RO or a dose close to the IC50 for OSC (nM) reduced cell viability. Administration of RO to mice with BT-474 tumor xenografts prevented tumor growth, with no apparent toxicity. RO degraded ERα while concomitantly inducing the anti-proliferative protein ERß. Two other cholesterol-lowering drugs, Fluvastatin and Simvastatin, were less effective in reducing breast cancer cell viability and were found not to induce ERß. ERß inhibition or knockdown prevented RO-dependent loss of cell viability. Importantly, RO had no effect on the viability of normal human mammary cells. RO is a potent inhibitor of hormone-dependent human breast cancer cell proliferation. The anti-tumor properties of RO appear to be in part due to an off-target effect that increases the ratio of ERß/ERα in breast cancer cells.


Assuntos
Antineoplásicos/farmacologia , Benzofenonas/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Colesterol/biossíntese , Transferases Intramoleculares/antagonistas & inibidores , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Benzofenonas/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Feminino , Humanos , Concentração Inibidora 50 , Camundongos
14.
Nutr Cancer ; 65(8): 1184-91, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24127693

RESUMO

Medroxyprogesterone acetate (MPA) is a synthetic progestin commonly administered to postmenopausal women for hormone replacement therapy and has been associated with increased risk of breast cancer. MPA has been shown to accelerate the development of mammary tumors in a 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer animal model. Previously, we have shown that intraperitoneally administered apigenin effectively treated and prevented the progression of MPA-accelerated breast cancer in DMBA-induced and xenograft mammary cancer models. Here we used the DMBA model to examine the chemopreventive effect of dietary apigenin against MPA-accelerated tumors with 3 different levels of apigenin (0.02%, 0.1%, and 0.5% w/w) incorporated into a phytoestrogen-free diet. Results showed that 0.1% dietary apigenin reduced MPA-dependent tumor incidence; however, the same dietary level increased tumor multiplicity in animals that developed tumors. Neither 0.02% nor 0.5% dietary apigenin reduced MPA-dependent tumor incidence or latency, and tumor multiplicity increased significantly in response to 0.5% apigenin. These results contrast with previous chemopreventive effects observed when apigenin was administered intraperitoneally, suggesting that route of administration may influence its action. Consequently, until further research clarifies the effect of dietary apigenin on progestin-accelerated mammary tumors, caution should be exercised when considering the flavonoid as a dietary supplement for preventing hormone-dependent breast cancer.


Assuntos
9,10-Dimetil-1,2-benzantraceno/toxicidade , Apigenina/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Suplementos Nutricionais , Acetato de Medroxiprogesterona/efeitos adversos , Animais , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Terapia de Reposição Hormonal/efeitos adversos , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/patologia , Acetato de Medroxiprogesterona/administração & dosagem , Pós-Menopausa/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
15.
Menopause ; 20(5): 504-10, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23615641

RESUMO

OBJECTIVE: Clinical trials have demonstrated an increased risk of breast cancer during estrogen/norethisterone (NET) therapy. With this in mind, the effects of estrogen/NET combination on the proliferation of breast cancer cells overexpressing the progesterone receptor membrane component 1 (PGRMC1) were examined. The same combination was used for the first time in a mouse xenograft model to determine its effects on tumor development. METHODS: MCF-7 cells were stably transfected with PGRMC1 expression plasmid (WT-12 cells) or empty vector control (pcDNA-3HA). NET, medroxyprogesterone acetate (MPA), and progesterone were tested alone and sequentially and continuously combined with estradiol (E2). Six-week-old nude mice were inoculated with E2 pellets 24 hours before the injection of tumor cells into both flanks (n = 5-6 mice per group). After 8 days, animals were inoculated with a NET pellet or with placebo pellets, and tumor volumes were recorded twice a week. RESULTS: NET alone significantly increased the proliferation of WT-12 cells, MPA was effective only at the two highest concentrations, and progesterone had no effect. The twofold to threefold E2-induced increase (10 M) was not significantly influenced by the addition of the various progestogens. In contrast, 10 M E2 had no effect; however, addition of MPA and NET triggered a significant proliferative response. In vivo, a sequential combination of NET and E2 also significantly increased the tumor growth of WT-12 cells; empty vector cells did not respond to NET. CONCLUSIONS: We have demonstrated for the first time that an E2/NET combination increases the proliferation of PGRMC1-overexpressing breast cancer cells, both in vivo and in vitro. Our results suggest that undetected tumor cells overexpressing PGRMC1 may be more likely to develop into frank tumor cells in women undergoing E2/NET hormone therapy.


Assuntos
Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Anticoncepcionais Orais Sintéticos/farmacologia , Estradiol/farmacologia , Estrogênios/farmacologia , Proteínas de Membrana/metabolismo , Noretindrona/farmacologia , Receptores de Progesterona/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Anticoncepcionais Orais Sintéticos/uso terapêutico , Quimioterapia Combinada , Estradiol/uso terapêutico , Estrogênios/uso terapêutico , Feminino , Expressão Gênica , Humanos , Células MCF-7 , Acetato de Medroxiprogesterona/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Camundongos Nus , Noretindrona/uso terapêutico , Receptores de Progesterona/antagonistas & inibidores , Receptores de Progesterona/genética , Transfecção , Carga Tumoral/efeitos dos fármacos
16.
Int J Oncol ; 42(1): 179-87, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23123638

RESUMO

Recent epidemiological studies show that postmenopausal women taking estrogen-progestin hormone replacement therapy (HRT) have a higher risk of breast cancer than women on an HRT regimen lacking progestins. This may be related to the observation that progestin-treated breast cancer cells express and secrete high levels of vascular endothelial growth factor (VEGF), a potent angiogenic factor that promotes breast tumor growth. Anti-progestins such as RU-486 block this effect, indicating that progesterone receptors (PR) are involved in promoting VEGF induction; however antiprogestins cross-react with other steroid receptors which limits their clinical use. Alternative strategies are, therefore, needed to arrest the growth of progestin-dependent tumors. 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), a novel anticancer drug initially developed as an inhibitor of HIF-1α, is currently undergoing preclinical trials against various forms of cancer. Since HIF-1α has recently been implicated in PR-mediated VEGF synthesis, we undertook studies to determine whether YC-1 inhibits progestin-dependent VEGF induction and tumor progression. Surprisingly, we found that YC-1 downregulated PR in human breast cancer cells, both in vivo and in vitro, thereby blocking progestin-dependent induction of VEGF and tumor growth. YC-1 also inhibited progestin-accelerated DMBA-induced mammary tumors in rats, properties which would likely render it effective against progestin-dependent tumors which frequently develop in post-menopausal women. We, therefore, propose that based on our observations, YC-1 warrants further investigation as a novel agent which could prove extremely useful as an anti-angiogenic chemotherapeutic drug.


Assuntos
Ativadores de Enzimas/farmacologia , Indazóis/farmacologia , Neoplasias Mamárias Animais/prevenção & controle , Progestinas/farmacologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Antracenos/toxicidade , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Feminino , Guanilato Ciclase/metabolismo , Antagonistas de Hormônios/farmacologia , Humanos , Técnicas Imunoenzimáticas , Neoplasias Mamárias Animais/induzido quimicamente , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Nus , Mifepristona/farmacologia , Piperidinas/toxicidade , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Progesterona/antagonistas & inibidores , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Horm Cancer ; 3(4): 160-71, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22569706

RESUMO

Recent clinical and epidemiological evidence shows that hormone replacement therapy (HRT) containing both estrogen and progestin increases the risk of primary and metastatic breast cancer in post-menopausal women while HRT containing only estrogen does not. We and others previously showed that progestins promote the growth of human breast cancer cells in vitro and in vivo. In this study, we sought to determine whether apigenin, a low molecular weight anti-carcinogenic flavonoid, inhibits the growth of aggressive Her2/neu-positive BT-474 xenograft tumors in nude mice exposed to medroxyprogesterone acetate (MPA), the most commonly used progestin in the USA. Our data clearly show that apigenin (50 mg/kg) inhibits progression and development of these xenograft tumors by inducing apoptosis, inhibiting cell proliferation, and reducing expression of Her2/neu. Moreover, apigenin reduced levels of vascular endothelial growth factor (VEGF) without altering blood vessel density, indicating that continued expression of VEGF may be required to promote tumor cell survival and maintain blood flow. While previous studies showed that MPA induces receptor activator of nuclear factor kappa-B ligand (RANKL) expression in rodent mammary gland, MPA reduced levels of RANKL in human tumor xenografts. RANKL levels remained suppressed in the presence of apigenin. Exposure of BT-474 cells to MPA in vitro also resulted in lower levels of RANKL; an effect that was independent of progesterone receptors since it occurred both in the presence and absence of the antiprogestin RU-486. In contrast to our in vivo observations, apigenin protected against MPA-dependent RANKL loss in vitro, suggesting that MPA and apigenin modulate RANKL levels differently in breast cancer cells in vivo and in vitro. These preclinical findings suggest that apigenin has potential as an agent for the treatment of progestin-dependent breast disease.


Assuntos
Apigenina/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Acetato de Medroxiprogesterona/antagonistas & inibidores , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Congêneres da Progesterona/farmacologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Terapia de Reposição Hormonal , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Acetato de Medroxiprogesterona/farmacologia , Camundongos , Camundongos Nus , Neoplasias Hormônio-Dependentes/metabolismo , Neoplasias Hormônio-Dependentes/patologia , Pós-Menopausa , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Histol Histopathol ; 27(3): 337-45, 2012 03.
Artigo em Inglês | MEDLINE | ID: mdl-22237711

RESUMO

Members of the fibroblast growth factor (FGF) family have been associated with tumor progression and angiogenesis, though the mechanism through which they affect the progression of breast cancer remains elusive. We recently showed that progestins increase the production of the potent angiogenic factor VEGF in an in vivo BT-474 human breast cancer cell-derived xenograft model. In this study we sought to determine the effect of progesterone (P) on regulation of specific FGF family members (FGF-2, FGF-4 and FGF-8) in the same model. Using immunohistochemistry we found that treatment with P significantly reduced FGF-2 and FGF-8 levels, while modestly increasing the levels of FGF-4 in tumors collected at the termination of the study or soon after P treatment began. The in vivo observations with FGF-2 were confirmed in cultured BT-474 cells, though the P-mediated reduction in FGF-2 was not blocked by the anti-progestin RU-486, suggesting that classical progesterone receptors (PR) are not involved in FGF-2 down-regulation. Also, P did not affect levels of FGF-2 mRNA in BT-474 cells, indicating that P exerts its effects on FGF-2 post-transcriptionally. Our observations suggest that the in vivo stimulation of BT-474 cell growth by P is associated with down-regulation of FGF-2 and FGF-8. Furthermore, since FGF-4 levels increased during P-treatment, FGF-4 may be required for tumor growth and maintenance and might therefore be a potential therapeutic target through which to suppress P-dependent tumor growth.


Assuntos
Neoplasias da Mama/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Progesterona/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 4 de Crescimento de Fibroblastos/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Humanos , Imuno-Histoquímica , Camundongos , RNA Mensageiro/metabolismo , Fatores de Tempo , Transplante Heterólogo , Carga Tumoral
19.
Cell Cycle ; 10(23): 4119-27, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22101277

RESUMO

Complement 1q-Binding Protein (C1qbp) is a mitochondrial protein reported to be upregulated in cancer. However, whether C1qbp plays a tumor suppressive or tumorigenic role in the progression of cancer is controversial. Moreover, the exact effects of C1qbp on cell proliferation, migration, and death/survival have not been definitely proven. To this end, we comprehensively examined the effects of C1qbp on mitochondrial-dependent cell death, proliferation, and migration in both normal and breast cancer cells using genetic gain- and loss-of-function approaches. In normal fibroblasts, overexpression of C1qbp protected the cells against staurosporine-induce apoptosis, increased proliferation, decreased cellular ATP, and increased cell migration in a wound-healing assay. In contrast, the opposite effects were observed in fibroblasts depleted of C1qbp by RNA interference. C1qbp expression was found to be markedly elevated in 4 different human breast cancer cell lines as well as in ductal and adenocarcinoma tumors from breast cancer patients. Stable knockdown of C1qbp by shRNA in the aggressive MDA-MB-231 breast cancer cell line greatly reduced cell proliferation, increased ATP levels, and decreased cell migration compared to control shRNA-transfected cells. Moreover, C1qbp knockdown elicited a significant increase in doxorubicin-induced apoptosis in the MDA-MB-231 cells. Finally, C1qbp upregulation was not restricted to breast cancer cells and tumors, as levels of C1qbp were also found to be significantly elevated in both human lung and colon cancer cell lines and carcinomas. Together, these results establish a pro-tumor, rather than anti-tumor, role for C1qbp, and indicate that C1qbp could serve as a molecular target for cancer therapeutics.


Assuntos
Proteínas de Transporte/metabolismo , Morte Celular , Movimento Celular , Proliferação de Células , Proteínas Mitocondriais/metabolismo , Adenoviridae/genética , Adenoviridae/metabolismo , Animais , Proteínas de Transporte/genética , Doxorrubicina/farmacologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HCT116 , Células HT29 , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Interferência de RNA , Estaurosporina/farmacologia , Transfecção , Cicatrização
20.
Cancer Prev Res (Phila) ; 4(8): 1316-24, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21505181

RESUMO

The use of progestins as a component of hormone replacement therapy has been linked to an increase in breast cancer risk in postmenopausal women. We have previously shown that medroxyprogesterone acetate (MPA), a commonly administered synthetic progestin, increases production of the potent angiogenic factor vascular endothelial growth factor (VEGF) by tumor cells, leading to the development of new blood vessels and tumor growth. We sought to identify nontoxic chemicals that would inhibit progestin-induced tumorigenesis. We used a recently developed progestin-dependent mammary cancer model in which tumors are induced in Sprague-Dawley rats by 7,12-dimethylbenz(a)anthracene (DMBA) treatment. The flavonoid apigenin, which we previously found to inhibit progestin-dependent VEGF synthesis in human breast cancer cells in vitro, significantly delayed the development of, and decreased the incidence and multiplicity of, MPA-accelerated DMBA-induced mammary tumors in this animal model. Whereas apigenin decreased the occurrence of such tumors, it did not block MPA-induced intraductal and lobular epithelial cell hyperplasia in the mammary tissue. Apigenin blocked MPA-dependent increases in VEGF, and suppressed VEGF receptor-2 (VEGFR-2) but not VEGFR-1 in regions of hyperplasia. No differences were observed in estrogen or progesterone receptor (ER/PR) levels, or the number of estrogen receptor-positive cells, within the mammary gland of MPA-treated animals administered apigenin, MPA-treated animals, and placebo treated animals. However, the number of progesterone receptor-positive cells was reduced in animals treated with MPA or MPA and apigenin compared with those treated with placebo. These findings suggest that apigenin has important chemopreventive properties for those breast cancers that develop in response to progestins.


Assuntos
9,10-Dimetil-1,2-benzantraceno/farmacologia , Apigenina/farmacologia , Neoplasias Mamárias Animais/tratamento farmacológico , Acetato de Medroxiprogesterona/metabolismo , Animais , Apigenina/metabolismo , Relação Dose-Resposta a Droga , Feminino , Imuno-Histoquímica/métodos , Neovascularização Patológica , Placebos , Ratos , Ratos Sprague-Dawley , Receptores de Progesterona/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...