Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
1.
Nanoscale ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38766759

RESUMO

The assembly of cluster units in a distinct manner can give rise to nanoclusters exhibiting unique geometrical structures and properties. Herein, we present a one-pot synthesis and structural characterization of a AuAg alloy cluster, [Au9Ag6(CCR)10(DPPM)2Cl2](PPh4), denoted as Au9Ag6 (where HCCR is 3,5-bis(trifluoromethyl)phenylacetylene, and DPPM is bis(diphenylphosphino)methane). Single-crystal X-ray diffraction data analysis reveals that Au9Ag6 features a distinctive Au7Ag6 bi-decahedral core, formed by a twisted assembly of two Au4Ag3 decahedra sharing one vertex. The Au4Ag3 building blocks are bridged by two gold atoms on opposite sides of the bi-decahedral core. The Au9Ag6 cluster is monoanionic and it is stabilized by two chloride, two DPPM and ten alkynyl ligands. This cluster represents the first instance of a cluster of clusters built upon decahedral units.

2.
ACS Nano ; 18(19): 12025-12048, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38706306

RESUMO

Cardiac interfacing devices are essential components for the management of cardiovascular diseases, particularly in terms of electrophysiological monitoring and implementation of therapies. However, conventional cardiac devices are typically composed of rigid and bulky materials and thus pose significant challenges for effective long-term interfacing with the curvilinear surface of a dynamically beating heart. In this regard, the recent development of intrinsically soft bioelectronic devices using nanocomposites, which are fabricated by blending conductive nanofillers in polymeric and elastomeric matrices, has shown great promise. The intrinsically soft bioelectronics not only endure the dynamic beating motion of the heart and maintain stable performance but also enable conformal, reliable, and large-area interfacing with the target cardiac tissue, allowing for high-quality electrophysiological mapping, feedback electrical stimulations, and even mechanical assistance. Here, we explore next-generation cardiac interfacing strategies based on soft bioelectronic devices that utilize elastic conductive nanocomposites. We first discuss the conventional cardiac devices used to manage cardiovascular diseases and explain their undesired limitations. Then, we introduce intrinsically soft polymeric materials and mechanical restraint devices utilizing soft polymeric materials. After the discussion of the fabrication and functionalization of conductive nanomaterials, the introduction of intrinsically soft bioelectronics using nanocomposites and their application to cardiac monitoring and feedback therapy follow. Finally, comments on the future prospects of soft bioelectronics for cardiac interfacing technologies are discussed.


Assuntos
Nanoestruturas , Humanos , Nanoestruturas/química , Doenças Cardiovasculares/terapia , Condutividade Elétrica , Polímeros/química , Animais , Nanocompostos/química , Coração/fisiologia
3.
J Am Chem Soc ; 146(18): 12556-12564, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38660792

RESUMO

Transition metal nitride (TMN)-based nanostructures have emerged as promising materials for diverse applications in electronics, photonics, energy storage, and catalysis due to their highly desirable physicochemical properties. However, synthesizing TMN-based nanostructures with designed compositions and morphologies poses challenges, especially in the solution phase. The cation exchange reaction (CER) stands out as a versatile postsynthetic strategy for preparing nanostructures that are otherwise inaccessible through direct synthesis. Nevertheless, exploration of the CER in TMNs lags behind that in metal chalcogenides and metal phosphides. Here, we demonstrate cation exchange in colloidal metal nitride nanocrystals, employing Cu3N nanocrystals as starting materials to synthesize Ni4N and CoN nanocrystals. By controlling the reaction conditions, Cu3N@Ni4N and Cu3N@CoN core@shell heterostructures with tunable compositions can also be obtained. The Ni4N and CoN nanocrystals are evaluated as catalysts for the electrochemical oxygen evolution reaction (OER). Remarkably, CoN nanocrystals demonstrate superior OER performance with a low overpotential of 286 mV at 10 mA·cm-2, a small Tafel slope of 89 mV·dec-1, and long-term stability. Our CER approach in colloidal TMNs offers a new strategy for preparing other metal nitride nanocrystals and their heterostructures, paving the way for prospective applications.

4.
Nat Mater ; 23(4): 552-559, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316979

RESUMO

Developing active and stable atomically dispersed catalysts is challenging because of weak non-specific interactions between catalytically active metal atoms and supports. Here we demonstrate a general method for synthesizing atomically dispersed catalysts via photochemical defect tuning for controlling oxygen-vacancy dynamics, which can induce specific metal-support interactions. The developed synthesis method offers metal-dynamically stabilized atomic catalysts, and it can be applied to reducible metal oxides, including TiO2, ZnO and CeO2, containing various catalytically active transition metals, including Pt, Ir and Cu. The optimized Pt-DSA/TiO2 shows unprecedentedly high photocatalytic hydrogen evolution activity, producing 164 mmol g-1 h-1 with a turnover frequency of 1.27 s-1. Furthermore, it generates 42.2 mmol gsub-1 of hydrogen via a non-recyclable-plastic-photoreforming process, achieving a total conversion of 98%; this offers a promising solution for mitigating plastic waste and simultaneously producing valuable energy sources.

5.
Chem Commun (Camb) ; 60(10): 1289-1292, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38197160

RESUMO

Manipulating the atomic-level structure of the subshell of a nanocluster while preserving the inner and outer shell structure is challenging. We present the synthesis and molecular structure of an alkynyl-protected Au34Ag27 nanocluster, which exhibits distinct third shell atomic arrangement, electronic structure, and optical properties from those of the Au34Ag28 nanocluster.

6.
Adv Mater ; 36(10): e2210819, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36793245

RESUMO

The growing interest in nanomedicine over the last 20 years has carved out a research field called "nanocatalytic therapy," where catalytic reactions mediated by nanomaterials are employed to intervene in disease-critical biomolecular processes. Among many kinds of catalytic/enzyme-mimetic nanomaterials investigated thus far, ceria nanoparticles stand out from others owing to their unique scavenging properties against biologically noxious free radicals, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), by exerting enzyme mimicry and nonenzymatic activities. Much effort has been made to utilize ceria nanoparticles as self-regenerating antioxidative and anti-inflammatory agents for various kinds of diseases, given the detrimental effects of ROS and RNS therein that need alleviation. In this context, this review is intended to provide an overview as to what makes ceria nanoparticles merit attention in disease therapy. The introductory part describes the characteristics of ceria nanoparticles as an oxygen-deficient metal oxide. The pathophysiological roles of ROS and RNS are then presented, as well as their scavenging mechanisms by ceria nanoparticles. Representative examples of recent ceria-nanoparticle-based therapeutics are summarized by categorization into organ and disease types, followed by the discussion on the remaining challenges and future research directions.


Assuntos
Nanopartículas , Nanoestruturas , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Espécies Reativas de Oxigênio , Radicais Livres
7.
Adv Sci (Weinh) ; 11(6): e2307600, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072639

RESUMO

Understanding the mechanism underlying the formation of quantum-sized semiconductor nanocrystals is crucial for controlling their synthesis for a wide array of applications. However, most studies of 2D CdSe nanocrystals have relied predominantly on ex situ analyses, obscuring key intermediate stages and raising fundamental questions regarding their lateral shapes. Herein, the formation pathways of two distinct quantum-sized 2D wurtzite-CdSe nanocrystals - nanoribbons and nanosheets - by employing a comprehensive approach, combining in situ small-angle X-ray scattering techniques with various ex situ characterization methods is studied. Although both nanostructures share the same thickness of ≈1.4 nm, they display contrasting lateral dimensions. The findings reveal the pivotal role of Se precursor reactivity in determining two distinct synthesis pathways. Specifically, highly reactive precursors promote the formation of the nanocluster-lamellar assemblies, leading to the synthesis of 2D nanoribbons with elongated shapes. In contrast, mild precursors produce nanosheets from a tiny seed of 2D nuclei, and the lateral growth is regulated by chloride ions, rather than relying on nanocluster-lamellar assemblies or Cd(halide)2 -alkylamine templates, resulting in 2D nanocrystals with relatively shorter lengths. These findings significantly advance the understanding of the growth mechanism governing quantum-sized 2D semiconductor nanocrystals and offer valuable guidelines for their rational synthesis.

8.
Adv Mater ; 36(5): e2305394, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37643367

RESUMO

Lysosomes are critical in modulating the progression and metastasis for various cancers. There is currently an unmet need for lysosomal alkalizers that can selectively and safely alter the pH and inhibit the function of cancer lysosomes. Here an effective, selective, and safe lysosomal alkalizer is reported that can inhibit autophagy and suppress tumors in mice. The lysosomal alkalizer consists of an iron oxide core that generates hydroxyl radicals (•OH) in the presence of excessive H+ and hydrogen peroxide inside cancer lysosomes and cerium oxide satellites that capture and convert •OH into hydroxide ions. Alkalized lysosomes, which display impaired enzyme activity and autophagy, lead to cancer cell apoptosis. It is shown that the alkalizer effectively inhibits both local and systemic tumor growth and metastasis in mice. This work demonstrates that the intrinsic properties of nanoparticles can be harnessed to build effective lysosomal alkalizers that are both selective and safe.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Lisossomos , Nanopartículas/química , Apoptose , Autofagia
9.
Nat Mater ; 23(1): 108-115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37919351

RESUMO

Multi-metal oxides in general and perovskite oxides in particular have attracted considerable attention as oxygen evolution electrocatalysts. Although numerous theoretical studies have been undertaken, the most promising perovskite-based catalysts continue to emerge from human-driven experimental campaigns rather than data-driven machine learning protocols, which are often limited by the scarcity of experimental data on which to train the models. This work promises to break this impasse by demonstrating that active learning on even small datasets-but supplemented by informative structural-characterization data and coupled with closed-loop experimentation-can yield materials of outstanding performance. The model we develop not only reproduces several non-obvious and actively studied experimental trends but also identifies a composition of a perovskite oxide electrocatalyst exhibiting an intrinsic overpotential at 10 mA cm-2oxide of 391 mV, which is among the lowest known of four-metal perovskite oxides.

10.
Adv Mater ; 36(13): e2313032, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38113897

RESUMO

The catalytic activity and product selectivity of the electrochemical CO2 reduction reaction (eCO2RR) depend strongly on the local microenvironment of mass diffusion at the nanostructured catalyst and electrolyte interface. Achieving a molecular-level understanding of the electrocatalytic reaction requires the development of tunable metal-ligand interfacial structures with atomic precision, which is highly challenging. Here, the synthesis and molecular structure of a 25-atom silver nanocluster interfaced with an organic shell comprising 18 thiolate ligands are presented. The locally induced hydrophobicity by bulky alkyl functionality near the surface of the Ag25 cluster dramatically enhances the eCO2RR activity (CO Faradaic efficiency, FECO: 90.3%) with higher CO partial current density (jCO) in an H-cell compared to Ag25 cluster (FECO: 66.6%) with confined hydrophilicity, which modulates surface interactions with water and CO2. Remarkably, the hydrophobic Ag25 cluster exhibits jCO as high as -240 mA cm-2 with FECO >90% at -3.4 V cell potential in a gas-fed membrane electrode assembly device. Furthermore, this cluster demonstrates stable eCO2RR over 120 h. Operando surface-enhanced infrared absorption spectroscopy and theoretical simulations reveal how the ligands alter the neighboring water structure and *CO intermediates, impacting the intrinsic eCO2RR activity, which provides atomistic mechanistic insights into the crucial role of confined hydrophobicity.

11.
J Am Chem Soc ; 145(50): 27407-27414, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38055351

RESUMO

Unraveling the atomistic synergistic effects of nanoalloys on the electrocatalytic CO2 reduction reaction (eCO2RR), especially in the presence of copper, is of paramount importance. However, this endeavor encounters significant challenges due to the lack of the crystallographically determined atomic-level structure of appropriate monometallic and bimetallic analogues. Herein, we report a one-pot synthesis and structure characterization of a AuCu nanoalloy cluster catalyst, [Au15Cu4(DPPM)6Cl4(C≡CR)1]2+ (denoted as Au15Cu4). Single-crystal X-ray diffraction analysis reveals that Au15Cu4 comprises two interpenetrating incomplete, centered icosahedra (Au9Cu2 and Au8Cu3) and is protected by six DPPM, four halide, and one alkynyl ligand. The Au15Cu4 cluster and its closest monometal structural analogue, [Au18(DPPM)6Br4]2+ (denoted as Au18), as model systems, enable the elucidation of the atomistic synergistic effects of Au and Cu on eCO2RR. The results reveal that Au15Cu4 is an excellent eCO2RR catalyst in a gas diffusion electrode-based membrane electrode assembly (MEA) cell, exhibiting a high CO Faradaic efficiency (FECO) of >90%, and this efficiency is substantially higher than that of the undoped Au18 (FECO: 60% at -3.75 V). Au15Cu4 exhibits an industrial-level CO partial current density of up to -413 mA/cm2 at -3.75 V with the gas CO2-fed MEA, which is 2-fold higher than that of Au18. The density functional theory (DFT) calculations demonstrate that the synergistic effects are induced by Cu doping, where the exposed pair of AuCu dual sites was suggested for launching the eCO2RR process. Besides, DFT simulations reveal that these special dual sites synergistically coordinate a moderate shift in the d-state, thus enhancing its overall catalytic performance.

13.
ACS Nano ; 17(21): 21470-21479, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37847158

RESUMO

Single-atom photocatalysis has shown potential in various single-step organic transformations, but its use in multistep organic transformations in one reaction systems has rarely been achieved. Herein, we demonstrate atomic site orthogonality in the M1/C3N4 system (where M = Pd or Ni), enabling a cascade photoredox reaction involving oxidative and reductive reactions in a single system. The system utilizes visible-light-generated holes and electrons from C3N4, driving redox reactions (e.g., oxidation and fluorination) at the surface of C3N4 and facilitating cross-coupling reactions (e.g., C-C and C-O bond formation) at the metal site. The concept is generalized to different systems of Pd and Ni, thus making the catalytic site-orthogonal M1/C3N4 system an ideal photocatalyst for improving the efficiency and selectivity of multistep organic transformations.

14.
Nat Nanotechnol ; 18(12): 1502-1514, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37884660

RESUMO

Commencing with the breakdown of immune tolerance, multiple pathogenic factors, including synovial inflammation and harmful cytokines, are conjointly involved in the progression of rheumatoid arthritis. Intervening to mitigate some of these factors can bring a short-term therapeutic effect, but other unresolved factors will continue to aggravate the disease. Here we developed a ceria nanoparticle-immobilized mesenchymal stem cell nanovesicle hybrid system to address multiple factors in rheumatoid arthritis. Each component of this nanohybrid works individually and also synergistically, resulting in comprehensive treatment. Alleviation of inflammation and modulation of the tissue environment into an immunotolerant-favourable state are combined to recover the immune system by bridging innate and adaptive immunity. The therapy is shown to successfully treat and prevent rheumatoid arthritis by relieving the main symptoms and also by restoring the immune system through the induction of regulatory T cells in a mouse model of collagen-induced arthritis.


Assuntos
Artrite Experimental , Artrite Reumatoide , Camundongos , Animais , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Imunidade Adaptativa , Citocinas , Inflamação
15.
Chem Sci ; 14(38): 10532-10546, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37800008

RESUMO

Accurate identification of active sites is highly desirable for elucidation of the reaction mechanism and development of efficient catalysts. Despite the promising catalytic performance of thiolated metal nanoclusters (NCs), their actual catalytic sites remain elusive. Traditional first-principles calculations and experimental observations suggested dealkylated S and dethiolated metal, respectively, to be the active centers. However, the real kinetic origin of thiolate etching during the electrocatalysis of NCs is still puzzling. Herein, we conducted advanced first-principles calculations and electrochemical/spectroscopic experiments to unravel the electrochemical etching kinetics of thiolate ligands in prototype Au25(SCH3)18 NC. The electrochemical processes are revealed to be spontaneously facilitated by dethiolation (i.e., desorption of -SCH3), forming the free HSCH3 molecule after explicitly including the solvent effect and electrode potential. Thus, exposed under-coordinated Au atoms, rather than the S atoms, serve as the real catalytic sites. The thermodynamically preferred Au-S bond cleavage arises from the selective attack of H from proton/H2O on the S atom under suitable electrochemical bias due to the spatial accessibility and the presence of S lone pair electrons. Decrease of reduction potential promotes the proton attack on S and significantly accelerates the kinetics of Au-S bond breakage irrespective of the pH of the medium. Our theoretical results are further verified by the experimental electrochemical and spectroscopic data. At more negative electrode potentials, the number of -SR ligands decreased with concomitant increase of the vibrational intensity of S-H bonds. These findings together clarify the atomic-level activation mechanism on the surface of Au25(SR)18 NCs.

16.
Adv Mater ; 35(52): e2306092, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37739451

RESUMO

Conversion of sunlight and organic carbon substrates to sustainable energy sources through microbial metabolism has great potential for the renewable energy industry. Despite recent progress in microbial photosynthesis, the development of microbial platforms that warrant efficient and scalable fuel production remains in its infancy. Efficient transfer and retrieval of gaseous reactants and products to and from microbes are particular hurdles. Here, inspired by water lily leaves floating on water, a microbial device designed to operate at the air-water interface and facilitate concomitant supply of gaseous reactants, smooth capture of gaseous products, and efficient sunlight delivery is presented. The floatable device carrying Rhodopseudomonas parapalustris, of which nitrogen fixation activity is first determined through this study, exhibits a hydrogen production rate of 104 mmol h-1  m-2 , which is 53 times higher than that of a conventional device placed at a depth of 2 cm in the medium. Furthermore, a scaled-up device with an area of 144 cm2 generates hydrogen at a high rate of 1.52 L h-1  m-2 . Efficient nitrogen fixation and hydrogen generation, low fabrication cost, and mechanical durability corroborate the potential of the floatable microbial device toward practical and sustainable solar energy conversion.

17.
Adv Mater ; 35(44): e2303458, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37591512

RESUMO

Stretchable conductive nanocomposites have been intensively studied for wearable bioelectronics. However, development of nanocomposites that simultaneously feature metal-like conductivity(> 100 000 S cm-1 ) and high stretchability (> 100%) for high-performance skin-mountable devices is still extremely challenging. Here a material strategy for such a nanocomposite is presented by using local bundling of silver nanowires stabilized with dual ligands (i.e., 1-propanethiols and 1-decanethiols). When the nanocomposite is solidified via solvent evaporation under a highly humid condition, the nanowires in the organic solution are bundled and stabilized. The resulting locally-bundled nanowires lower contact resistance while maintain their percolation network, leading to high conductivity. Dual ligands of 1-propanethiol and 1-decanethiol further boost up the conductivity. As a result, a nanocomposite with both high conductivity of ≈122,120 S cm-1 and high stretchability of ≈200% is obtained. Such superb electrical and mechanical properties are critical for various applications in skin-like electronics, and herein, a wearable thermo-stimulation device is demonstrated.

18.
Nanoscale ; 15(33): 13498-13514, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37578148

RESUMO

With the recent interest in the role of oxidative species/radicals in diseases, inorganic nanomaterials with redox activities have been extensively investigated for their potential use in nanomedicine. While many studies focusing on relieving oxidative stress to prevent pathogenesis and to suppress the progression of diseases have shown considerable success, another approach for increasing oxidative stress using nanomaterials to kill malignant cells has suffered from low efficiency despite its wide applicability to various targets. Chemodynamic therapy (CDT) is an emerging technique that can resolve such a problem by exploiting the characteristic tumour microenvironment to achieve high selectivity. In this review, we summarize the recent strategies and underlying mechanisms that have been used to improve the CDT performance using inorganic nanoparticles. In addition to the design of CDT agents, the effects of contributing factors, such as the acidity and the levels of hydrogen peroxide and antioxidants in the tumour microenvironment, together with their modulation and application in combination therapy, are presented. The challenges lying ahead of future clinical translation of this rapidly advancing technology are also discussed.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias , Humanos , Neoplasias/patologia , Nanopartículas/uso terapêutico , Nanomedicina , Oxirredução , Peróxido de Hidrogênio/uso terapêutico , Microambiente Tumoral , Linhagem Celular Tumoral
19.
Adv Mater ; 35(46): e2305512, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37487702

RESUMO

Simultaneous lactate metabolism inhibition and intracellular acidification (LIIA) is a promising approach for inducing tumor regression by depleting ATP. However, given the limited efficacy of individual metabolic modulators, a combination of various modulators is required for highly efficient LIIA. Herein, a co-delivery system that combines lactate transporter inhibitor, glucose oxidase, and O2 -evolving nanoparticles is proposed. As a vehicle, a facile room-temperature synthetic method for large-pore mesoporous silica nanoparticles (L-MSNs) is developed. O2 -evolving nanoparticles are then conjugated onto L-MSNs, followed by immobilizing the lactate transporter inhibitor and glucose oxidase inside the pores of L-MSNs. To load the lactate transporter inhibitor, which is too small to be directly loaded into the large pores, it is encapsulated in albumin by controlling the albumin conformation before being loaded into L-MSNs. Notably, inhibiting lactate efflux shifts the glucose consumption mechanism from lactate metabolism to glucose oxidase reaction, which eliminates glucose and produces acid. This leads to synergistic LIIA and subsequent ATP depletion in cancer cells. Consequently, L-MSN-based co-delivery of modulators for LIIA shows high anticancer efficacy in several mouse tumor models without toxicity in normal tissues. This study provides new insights into co-delivery of small-molecule drugs, proteins, and nanoparticles for synergistic metabolic modulation in tumors.


Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Glucose Oxidase/uso terapêutico , Transportadores de Ácidos Monocarboxílicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanopartículas/uso terapêutico , Glucose , Concentração de Íons de Hidrogênio , Trifosfato de Adenosina , Albuminas , Dióxido de Silício , Porosidade , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/uso terapêutico
20.
J Am Chem Soc ; 145(29): 15951-15962, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37436556

RESUMO

The ability to manipulate crystal structures using kinetic control is of broad interest because it enables the design of materials with structures, compositions, and morphologies that may otherwise be unattainable. Herein, we report the low-temperature structural transformation of bulk inorganic crystals driven by hard-soft acid-base (HSAB) chemistry. We show that the three-dimensional framework K2Sb8Q13 and layered KSb5Q8 (Q = S, Se, and Se/S solid solutions) compounds transform to one-dimensional Sb2Q3 nano/microfibers in N2H4·H2O solution by releasing Q2- and K+ ions. At 100 °C and ambient pressure, a transformation process takes place that leads to significant structural changes in the materials, including the formation and breakage of covalent bonds between Sb and Q. Despite the insolubility of the starting crystals in N2H4·H2O under the given conditions, the mechanism of this transformation can be rationalized by applying the HSAB principle. By adjusting factors such as the reactants' acid/base properties, temperature, and pressure, the process can be controlled, allowing for the achievement of a wide range of optical band gaps (ranging from 1.14 to 1.59 eV) while maintaining the solid solution nature of the anion sublattice in the Sb2Q3 nanofibers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...