Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(1)2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38251270

RESUMO

Mycotoxins, produced by fungi, frequently occur at different stages in the food supply chain between pre- and postharvest. Globally produced cereal crops are known to be highly susceptible to contamination, thus constituting a major public health concern. Among the encountered mycotoxigenic fungi in cereals, Fusarium spp. are the most frequent and produce both regulated (i.e., T-2 toxin, deoxynivalenol -DON-, zearalenone -ZEA-) and emerging (i.e., enniatins -ENNs-, beauvericin -BEA-) mycotoxins. In this study, we investigated the in vitro cytotoxic effects of regulated and emerging fusariotoxins on HepaRG cells in 2D and 3D models using undifferentiated and differentiated cells. We also studied the impact of ENN B1 and ENN B exposure on gene expression of HepaRG spheroids. Gene expression profiling pinpointed the differentially expressed genes (DEGs) and overall similar pathways were involved in responses to mycotoxin exposure. Complement cascades, metabolism, steroid hormones, bile secretion, and cholesterol pathways were all negatively impacted by both ENNs. For cholesterol biosynthesis, 23/27 genes were significantly down-regulated and could be correlated to a 30% reduction in cholesterol levels. Our results show the impact of ENNs on the cholesterol biosynthesis pathway for the first time. This finding suggests a potential negative effect on human health due to the essential role this pathway plays.


Assuntos
Antineoplásicos , Depsipeptídeos , Micotoxinas , Humanos , Micotoxinas/toxicidade , Perfilação da Expressão Gênica , Transcriptoma , Colesterol
2.
J Imaging ; 9(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36662111

RESUMO

Background and objective: Nowadays, foodborne illness is considered one of the most outgrowing diseases in the world, and studies show that its rate increases sharply each year. Foodborne illness is considered a public health problem which is caused by numerous factors, such as food intoxications, allergies, intolerances, etc. Mycotoxin is one of the food contaminants which is caused by various species of molds (or fungi), which, in turn, causes intoxications that can be chronic or acute. Thus, even low concentrations of Mycotoxin have a severely harmful impact on human health. It is, therefore, necessary to develop an assessment tool for evaluating their impact on the immune response. Recently, researchers have approved a new method of investigation using human dendritic cells, yet the analysis of the geometric properties of these cells is still visual. Moreover, this type of analysis is subjective, time-consuming, and difficult to perform manually. In this paper, we address the automation of this evaluation using image-processing techniques. Methods: Automatic classification approaches of microscopic dendritic cell images are developed to provide a fast and objective evaluation. The first proposed classifier is based on support vector machines (SVM) and Fisher's linear discriminant analysis (FLD) method. The FLD-SVM classifier does not provide satisfactory results due to the significant confusion between the inhibited cells on one hand, and the other two cell types (mature and immature) on the other hand. Then, another strategy was suggested to enhance dendritic cell recognition results that are emitted from microscopic images. This strategy is mainly based on fuzzy logic which allows us to consider the uncertainties and inaccuracies of the given data. Results: These proposed methods are tested on a real dataset consisting of 421 images of microscopic dendritic cells, where the fuzzy classification scheme efficiently improved the classification results by successfully classifying 96.77% of the dendritic cells. Conclusions: The fuzzy classification-based tools provide cell maturity and inhibition rates which help biologists evaluate severe health impacts caused by food contaminants.

3.
World J Microbiol Biotechnol ; 37(8): 143, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34328568

RESUMO

Antifungal and antibacterial activities of twenty-six combinations of lactic acid bacteria, propionibacteria, acetic acid bacteria and dairy yeasts inoculated in whey and milk were investigated. Associations including acetic acid bacteria were shown to suppress growth of the opportunistic yeast Candida albicans in well-diffusion assays. The protective effect of milk fermented with the two most promising consortia was confirmed in Caco-2 cell culture infected with C. albicans. Indeed, these fermented milks, after heat-treatment or not, suppressed lactate dehydrogenase release after 48 h while significant increase in LDH release was observed in the positive control (C. albicans alone) and with fermented milk obtained using commercial yogurt starter cultures. The analysis of volatile compounds in the cell-free supernatant using solid phase microextraction (SPME) coupled to gas chromatography-mass spectrometry (GC-MS) showed accumulation of significant amount of acetic acid by the consortium composed of Lactobacillus delbrueckii 5, Lactobacillus gallinarum 1, Lentilactobacillus parabuchneri 3, Lacticaseibacillus paracasei 33-4, Acetobacter syzygii 2 and Kluyveromyces marxianus 19, which corresponded to the zone of partial inhibition of C. albicans growth during well-diffusion assays. Interestingly, another part of anti-Candida activity, yielding small and transparent inhibition zones, was linked with the consortium cell fraction. This study showed a correlation between anti-Candida activity and the presence of acetic acid bacteria in dairy associations as well as a significant effect of two dairy associations against C. albicans in a Caco-2 cell model. These two associations may be promising consortia for developing functional dairy products with antagonistic action against candidiasis agents.


Assuntos
Candida/crescimento & desenvolvimento , Produtos Fermentados do Leite/microbiologia , Lactobacillales/metabolismo , Leite/microbiologia , Animais , Antibiose , Células CACO-2 , Bovinos , Produtos Fermentados do Leite/análise , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Lactobacillales/química , Lactobacillales/classificação , Leite/química
4.
Toxins (Basel) ; 13(5)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925367

RESUMO

Twelve halophyte species belonging to different families, widely represented along French Atlantic shoreline and commonly used in traditional medicine, were screened for protective activities against mycotoxins, in order to set out new promising sources of natural ingredients for feed applications. Selected halophytic species from diverse natural habitats were examined for their in vitro anti-mycotoxin activities, through viability evaluation of Madin-Darby Bovine Kidney (MDBK) and intestinal porcine enterocyte (IPEC-J2) cell lines. Besides, the in vitro antioxidant activities of plant extracts were assessed (total antioxidant and 2,2-diphenyl-1-picrylhydrazyl (DPPH)-scavenging bioassays). Of the 12 species, Galium arenarium, Convolvulus soldanella and Eryngium campestre exhibited the most protective action on MDBK and IPEC-J2 cells against zearalenone (ZEN) or T2 toxin contamination (restoring about 75% of cell viability at 10 µg·mL-1) without inflammation response. They also had strong antioxidant capacities (Inhibitory concentration of 50% (IC50) < 100 µg·mL-1 for DPPH radical and total antioxidant capacity (TAC) of 100 to 200 mg Ascorbic Acid Equivalent (AAE)·g-1 Dry Weight), suggesting that cell protection against intoxication involves antioxidant action. A bio-guided study showed that fractions of G. arenarium extract protect MDBK cells against T2 or ZEN toxicity and several major compounds like chlorogenic acid and asperuloside could be involved in this protective effect. Overall, our results show that the halophytes G. arenarium, C. soldanella and E. campestre should be considered further as new sources of ingredients for livestock feed with protective action against mycotoxin intoxication.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Micotoxinas/antagonistas & inibidores , Extratos Vegetais/farmacologia , Plantas Tolerantes a Sal/química , Animais , Bovinos , Linhagem Celular , Citoproteção , Micotoxinas/toxicidade , Plantas Tolerantes a Sal/metabolismo , Suínos
5.
Mar Drugs ; 18(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322429

RESUMO

A putative Type III Polyketide synthase (PKSIII) encoding gene was identified from a marine yeast, Naganishia uzbekistanensis strain Mo29 (UBOCC-A-208024) (formerly named as Cryptococcus sp.) isolated from deep-sea hydrothermal vents. This gene is part of a distinct phylogenetic branch compared to all known terrestrial fungal sequences. This new gene encodes a C-terminus extension of 74 amino acids compared to other known PKSIII proteins like Neurospora crassa. Full-length and reduced versions of this PKSIII were successfully cloned and overexpressed in a bacterial host, Escherichia coli BL21 (DE3). Both proteins showed the same activity, suggesting that additional amino acid residues at the C-terminus are probably not required for biochemical functions. We demonstrated by LC-ESI-MS/MS that these two recombinant PKSIII proteins could only produce tri- and tetraketide pyrones and alkylresorcinols using only long fatty acid chain from C8 to C16 acyl-CoAs as starter units, in presence of malonyl-CoA. In addition, we showed that some of these molecules exhibit cytotoxic activities against several cancer cell lines.


Assuntos
Antineoplásicos/metabolismo , Basidiomycota/enzimologia , Proteínas Fúngicas/metabolismo , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Antineoplásicos/farmacologia , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/farmacologia , Humanos , Fontes Hidrotermais/microbiologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Filogenia , Policetídeo Sintases/isolamento & purificação , Policetídeo Sintases/farmacologia , Policetídeos/farmacologia , Especificidade por Substrato , Células THP-1 , Microbiologia da Água
6.
Comput Methods Programs Biomed ; 195: 105520, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32497772

RESUMO

BACKGROUND AND OBJECTIVE: Nowadays, the number of pathologies related to food are multiplied. Mycotoxins are one of the most severe food contaminants that cause serious effects on the human health. Therefore, it is necessary to develop an assessment tool for evaluating their impact on the immune response. Recently, a new investigational method using human dendritic cells was endorsed by biologists. Nevertheless, analysis of the morphological features and the behavior of these cells remains merely visual. In addition, this manual analysis is difficult and time-consuming. Here, we focus mainly on automating the evaluation process by using advanced image processing technology. METHODS: An automatic segmentation approach of microscopic dendritic cell images is developed to provide a fast and objective evaluation. First, a combination of K-means clustering and mathematical morphology is used to detect dendritic cells. Second, a region-based Chan-Vese active contour model is used to segment the detected cells more precisely. Finally, dendritic cells are extracted by a filtering based on eccentricity measure. RESULTS: The proposed scheme is tested on an actual dataset containing 421 microscopic dendritic cell images. The experimental results show high conformity between the results of the proposed scheme and ground-truth elaborated by biological expert. Moreover, a comparative study with other state-of-art segmentation schemes demonstrates the efficiency of the proposed method. It gives the highest average accuracy rate (99.42 %) compared to recent studied approaches. CONCLUSIONS: The proposed image segmentation method for morphological analysis of dendrite inhibition can consistently be used as an assessment tool for biologists to facilitate the evaluation of serious health impacts of mycotoxins.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Análise por Conglomerados , Células Dendríticas , Humanos
7.
Toxicol In Vitro ; 48: 188-194, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29408666

RESUMO

Penicillium roqueforti is a common food and feed contaminant. However, it is also worldwide renowned for its use as a technological culture responsible for the typicity of blue-veined cheese. Members of the P. roqueforti species are also known to be able to produce secondary metabolites including mycophenolic acid (MPA) and roquefortine C (ROQ C) mycotoxins. In order to more closely simulate the reality of mycotoxin exposure through contaminated food consumption, this work investigated the toxicological effects of MPA and ROQ C not only in acute but also in chronic (i.e. 21-days continuous exposure) conditions on Caco-2 cells. Acute exposure to high MPA or ROQ C concentrations induced an increase of IL-8 secretion. Effects of 21-days continuous exposure on barrier integrity, based on concentrations found in blue-veined cheese and mean of blue cheese intake by French consumers, were monitored. Concerning exposure to ROQ C, no alteration of the intestinal barrier was observed. In contrast, the highest tested MPA concentration (780 µM) induced a decrease in the barrier function of Caco-2 cell monolayers, but no paracellular passage of bacteria was observed. This study highlighted that exposure to MPA and ROQ C average concentrations found in blue-veined cheese does not seem to induce significant toxicological effects in the tested conditions.


Assuntos
Micotoxinas/toxicidade , Penicillium/química , Doença Aguda , Fosfatase Alcalina/metabolismo , Translocação Bacteriana/efeitos dos fármacos , Células CACO-2 , Queijo/microbiologia , Doença Crônica , Enterócitos/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/toxicidade , Humanos , Indóis/toxicidade , Interleucina-8/metabolismo , Mitocôndrias/efeitos dos fármacos , Ácido Micofenólico/análise , Ácido Micofenólico/toxicidade , Piperazinas/toxicidade
8.
Cell Biol Toxicol ; 34(3): 191-205, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28822000

RESUMO

Deoxynivalenol (DON), nivalenol (NIV), T-2 toxin (T2), fumonisin B1 (FB1), zearalenone (ZEA), and moniliformin (MON) mycotoxins are common food and feed contaminants produced by Fusarium spp. However, while they are usually found to co-occur in a large range of commodities, only few data are available on mycotoxin co-exposure effects and cellular response mechanisms. In this study, the individual and combined toxic effects of these fusariotoxins were evaluated on the THP-1 human immune cell line as major fusariotoxins are mostly potent immunomodulators. In particular, four relevant fusariotoxin mixtures, namely DON-MON, DON-FB1, DON-ZEA, and NIV-T2, were studied using several parameters including cell viability as well as the expression of cell surface markers and the main mitogen-activated protein kinases (MAPKs). After 48 h exposure, a reduction of cell viability in a dose-dependent manner was observed for T2, the most cytotoxic mycotoxin, followed by NIV, DON, MON, FB1, and ZEA. Regarding mycotoxin mixtures, they mainly showed antagonism on cell viability reduction. Interestingly, at concentrations inhibiting 50% of cell viability, most viable cells exhibited surface marker loss and thus became potentially non-functional. In addition, during the first 18 h of exposure, the effects of mycotoxin mixtures on early cell apoptosis and necrosis were found to be different from those induced by the toxins alone. At the molecular level, after 1 h exposure of individual and combined mycotoxins, the three main MAPK signaling pathways (p38, SAPK/JNK, and ERK1/2) were activated, highlighting a fast reaction of the exposed cells even at low cytotoxicity levels.


Assuntos
Monócitos/efeitos dos fármacos , Toxina T-2/toxicidade , Biomarcadores/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células THP-1
9.
J Proteomics ; 173: 89-98, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29208510

RESUMO

Numerous surveys have highlighted the natural co-occurrence of deoxynivalenol (DON) and zearalenone (ZEA) mycotoxins in food and feed. Nevertheless, data regarding cellular mechanisms involved in response to their individual and simultaneous exposures are lacking. In this study, in order to analyze how low mycotoxin doses could impact cellular physiology and homeostasis, proteomic profiles of proliferating human hepatic cells (HepaRG) exposed for 1h and 24h to low DON and ZEA cytotoxicity levels (0.2 and 20µM respectively), alone or in combination, were analyzed by LC-MS/MS. Proteome analyses of mycotoxin-treated cells identified 4000 proteins with about 1.4% and 3.7% of these proteins exhibiting a significantly modified abundance compared to controls after 1h or 24h, respectively. Analysis of the Gene Ontology biological process annotations showed that cell cycle, proliferation and/or development as well as on DNA metabolic processes were affected for most treatments. Overall, different proteins, and thus biological processes, were impacted depending on the considered mycotoxin and exposure duration. Finally, despite the important proteome changes observed following 24h exposure to both mycotoxins, only the uptake of ZEA by the cells was suggested by the mycotoxin quantification in cell supernatants. BIOLOGICAL SIGNIFICANCE: This study investigated the proteomic changes that occurred after DON and ZEA (individually and in combination) short exposures at low cytotoxicity levels in proliferating HepaRG cells using LC-MS/MS. The obtained results showed that the cellular response is time- and mycotoxin or mixture-dependent. In particular, after 1h exposure, the DON+ZEA combination led to more proteomic changes than DON or ZEA alone, whereas the opposite was observed after 24h. In addition, the significant cellular response to stress induced by ZEA after 24h exposure seemed to be reduced when combined with DON. Thus, these results supported a possible mitigation by the hepatocytes when exposed to the mycotoxin mixture for a long duration. These findings represent an essential step to further explore adaptive cell response to mycotoxin exposure using with more complex incubation kinetics and combining different "omics" tools. Moreover, as mycotoxin quantification in cell supernatants showed different behaviors for DON and ZEA, this also raises the question about how mycotoxins actually trigger the cell response.


Assuntos
Hepatócitos/química , Proteoma/efeitos dos fármacos , Tricotecenos/farmacologia , Zearalenona/farmacologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , DNA/metabolismo , Interações Medicamentosas , Exposição Ambiental , Humanos , Micotoxinas/farmacologia
10.
Chem Biol Interact ; 281: 51-59, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29222052

RESUMO

Deoxynivalenol (DON) and zearalenone (ZEA) are mycotoxins primarily produced by Fusarium species and commonly co-occur in European grains. Some in vitro studies reported synergistic combined effects on cell viability reduction for these two natural food contaminants. However, most of these studies were carried out on conventional cell culture systems involving only one cell type and thus did not include cell-cell communication that is closer to in vivo conditions. In this context, we developed easy bi- and tri-culture systems using the Caco-2 (intestinal epithelial cells), THP-1 (monocytes) and HepaRG (hepatic cells) human cell lines in a proliferating state. Individual and combined cytotoxic effects of DON and ZEA were then assessed using co-cultures during 48 h. In bi-culture systems, results showed that only the highest tested dose of ZEA (IC30) induced a significant reduction in THP-1 viability with both Caco-2 and HepaRG cells cultured in transwells above. On the contrary, only the highest tested dose of DON (IC30) significantly affected HepaRG cell viability located under the Caco-2 cell monolayer. In addition, the DON + ZEA combination seemed to induce higher cytotoxicity than each toxin alone. Mycotoxin quantification in the abluminal compartment by Q-TOF LC-MS suggested uptake of both mycotoxins by the different cell lines. According to the co-culturing cell type, possible cell-cell interactions were also observed. Finally, in the tri-culture system, no cytotoxic effects were observed, regardless of the treatment. These findings highlighted the importance of the proposed models to better decipher toxicological impacts of mycotoxins on more complex cellular systems.


Assuntos
Comunicação Celular/efeitos dos fármacos , Micotoxinas/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Técnicas de Cocultura , Humanos , Micotoxinas/análise , Espectrometria de Massas por Ionização por Electrospray , Testes de Toxicidade Aguda , Tricotecenos/toxicidade , Zearalenona/toxicidade
11.
Food Chem Toxicol ; 109(Pt 1): 439-451, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28935499

RESUMO

While the reality of mycotoxin co-occurrence in food commodities is now established, their effects in mixtures are not well studied. The present study investigated the individual and combined effects of deoxynivalenol (DON), nivalenol (NIV), T-2 toxin (T2), fumonisin B1 (FB1), zearalenone (ZEA) and moniliformin (MON) fusariotoxins on cell viability and cell death mechanisms in proliferating HepaRG cells, a human derived liver cell line. In addition, DON-ZEA being one of the most widespread mycotoxin mixtures in grains worldwide, its effect on the expression levels of genes encoding for sets of hepatocyte-specific functions was studied. After 48 h, T2 appeared to be the most cytotoxic tested fusariotoxins, followed by NIV, DON and ZEA. Furthermore, at low cytotoxic doses, all tested fusariotoxin mixtures (DON-MON, DON-FB1, DON-ZEA and NIV-T2) acted synergistically on cell death. Interestingly, during the first 18 h of exposure, only FB1 and ZEA alone and in combination with DON seemed to induce cell apoptosis and necrosis. At the gene level, after only 1 h, DON-ZEA combination induced expression of drug-metabolizing enzymes contrary to individual exposures. Thus, the observed synergy of fusariotoxin mixtures suggested that their simultaneous presence in food commodities can induce a toxic risk that should be better taken into consideration.


Assuntos
Hepatócitos/efeitos dos fármacos , Toxina T-2/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Hepatócitos/citologia , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos
12.
Toxicol Lett ; 280: 238-246, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28865950

RESUMO

While numerous surveys highlighted the natural co-occurrence of mycotoxins in food, data about their toxicological combined effects is still limited. This is especially the case for chronic exposure conditions, although the latter are more representative of the mycotoxin risk associated with food consumption than acute exposure. In the present study, cell viability and gene expression levels of relevant hepatocyte-specific functions were evaluated for the HepaRG human liver cell line exposed to deoxynivalenol (DON) and/or zearalenone (ZEA) during 14, 28 and 42days at three subtoxic concentrations corresponding to i) the determined average exposure dose of French adult population, ii) the tolerable daily intake established by the Joint FAO/WHO Expert Committee and iii) the maximum level permitted by the European regulation in cereals intended for direct human consumption. For the latter, DON and DON+ZEA induced 90% cell mortality after 14days. In addition, depending on the considered toxin or mixture, doses and exposure periods, important variations of gene expression levels were observed. Despite the fact that in vitro conditions differ from the in vivo situation, the obtained results clearly highlighted that long-term toxicological effects of chronic exposure to mycotoxin combinations should be further investigated and, if necessary, taken into consideration at the regulatory level.


Assuntos
Hepatócitos/efeitos dos fármacos , Tricotecenos/toxicidade , Zearalenona/toxicidade , Linhagem Celular , Sobrevivência Celular , Esquema de Medicação , Quimioterapia Combinada , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Tricotecenos/administração & dosagem , Zearalenona/administração & dosagem
13.
Biomed Pharmacother ; 90: 375-385, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28380413

RESUMO

In this study, two Euphorbia species (i.e. terracina and paralias) were investigated for their cytotoxic and antioxidant activities. Cytotoxicity of plant methanol and chloroform fractions was examined towards human acute myeloid leukemia (THP1) and human colon epithelial (Caco2) cancer cell lines, as well as CD 14 and IEC-6 normal cells by targeting various modulators of apoptosis or inflammation. Moreover, secondary metabolite pools (phenolic classes, alkaloids, terpenes, saponins) and antioxidant activities (DPPH, ABTS and O2- scavenging, as well as FRAP tests) were assessed in plant extracts. Both Euphorbia species appeared to be rich in phenolic compounds and terpenoids, Moreover, E. terracina polar and apolar fractions and E. paralias polar fraction were highly active against THP1 cells, with IC50 values of 2.08, 14.43 and 54.58µg/mL, respectively. However, no cytotoxicity was found against normal cells (CD14+ monocytes). The results indicate that the three fractions induce apoptosis in THP1 cell line after 6h of exposure. Furthermore, apoptosis caused by apolar fraction was related to a caspase-dependent process, whereas other death pathways seemed to be involved with the polar fractions. An enhanced production of reactive oxygen species was detected upon cell treatment with plant extracts. Interestingly, they have no effect on cytokine TNF-α secretion in THP1 and normal cells compared to untreated cells, indicating that the three fractions caused no inflammation. Euphorbia terracina and E. paralias polar fractions showed strong antioxidant activity with potent scavenging capacity against DPPH, ABTS and superoxide radicals. Moreover, these fractions displayed a very high ferric reducing power. These findings confirm the strong antioxidant capacity of Euphorbia plants and suggest a targeted anti-cancer effect with a potent anti-proliferative property of E. terracina and E. paralias extracts, which induce programmed cell death in leukemia cell lines but not in normal monocytes cells.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Euphorbia/química , Leucemia Mieloide Aguda/tratamento farmacológico , Alcaloides/farmacologia , Animais , Células CACO-2 , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Saponinas/farmacologia , Terpenos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
14.
Int J Food Microbiol ; 248: 47-55, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28244372

RESUMO

The use of lactic acid bacteria (LAB) as bioprotective cultures can be an alternative to chemical preservatives or antibiotic to prevent fungal spoilage in dairy products. Among antifungal LAB, Lactobacillus harbinensis K.V9.3.1Np showed a remarkable antifungal activity for the bioprotection of fermented milk without modifying their organoleptic properties (Delavenne et al., 2015). The aim of the present study was to elucidate the action mechanism of this bioprotective strain against the spoilage yeast Yarrowia lipolytica. To do so, yeast viability, membrane potential, intracellular pH (pHi) and reactive oxygen species (ROS) production were assessed using flow cytometry analyses after 3, 6 and 10days incubation in cell-free supernatants. The tested supernatants were obtained after milk fermentation with yogurt starter cultures either in co-culture with L. harbinensis K.V9.3.1Np (active supernatant) or not (control supernatant). Scanning-electron microscopy (SEM) was used to monitor yeast cell morphology and 9 known antifungal organic acids were quantified in both yogurt supernatants using high-performance liquid chromatograph (HPLC). Yeast growth occurred within 3days incubation in control supernatant, while it was prevented for up to 10days by the active supernatant. Interestingly, between 66 and 99% of yeast cells were under a viable but non-cultivable (VNC) state despite an absence of membrane integrity loss. While ROS production was not increased in active supernatant, cell physiological changes including membrane depolarization and pHi decrease were highlighted. Moreover, morphological changes including membrane collapsing and cell lysis were observed. These effects could be attributed to the synergistic action of organic acids. Indeed, among the 8 organic acids quantified in active supernatant, five of them (acetic, lactic, 2-pyrrolidone-5-carboxylic, hexanoic and 2-hydroxybenzoic acids) were at significantly higher concentrations in the active supernatant than in the control one. In conclusion, this study has provided new information on the physiological mechanisms induced by an antifungal LAB that could be used as part of the hurdle technology to prevent fungal spoilage in dairy products.


Assuntos
Antibiose/fisiologia , Antifúngicos/farmacologia , Conservantes de Alimentos/farmacologia , Lactobacillus/metabolismo , Leite/microbiologia , Probióticos/farmacologia , Yarrowia/crescimento & desenvolvimento , Iogurte/microbiologia , Ácido Acético/metabolismo , Animais , Caproatos/metabolismo , Ácidos Carboxílicos/metabolismo , Membrana Celular/patologia , Cromatografia Líquida de Alta Pressão , Técnicas de Cocultura , Fermentação , Conservantes de Alimentos/metabolismo , Ácido Láctico/metabolismo , Microscopia Eletrônica de Varredura , Pirrolidinonas/metabolismo , Ácido Salicílico/metabolismo
15.
Toxins (Basel) ; 8(4): 94, 2016 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-27023609

RESUMO

Some foods and feeds are often contaminated by numerous mycotoxins, but most studies have focused on the occurrence and toxicology of a single mycotoxin. Regulations throughout the world do not consider the combined effects of mycotoxins. However, several surveys have reported the natural co-occurrence of mycotoxins from all over the world. Most of the published data has concerned the major mycotoxins aflatoxins (AFs), ochratoxin A (OTA), zearalenone (ZEA), fumonisins (FUM) and trichothecenes (TCTs), especially deoxynivalenol (DON). Concerning cereals and derived cereal product samples, among the 127 mycotoxin combinations described in the literature, AFs+FUM, DON+ZEA, AFs+OTA, and FUM+ZEA are the most observed. However, only a few studies specified the number of co-occurring mycotoxins with the percentage of the co-contaminated samples, as well as the main combinations found. Studies of mycotoxin combination toxicity showed antagonist, additive or synergic effects depending on the tested species, cell model or mixture, and were not necessarily time- or dose-dependent. This review summarizes the findings on mycotoxins and their co-occurrence in various foods and feeds from all over the world as well as in vitro experimental data on their combined toxicity.


Assuntos
Ração Animal , Contaminação de Alimentos/análise , Micotoxinas , Ração Animal/análise , Ração Animal/toxicidade , Animais , Monitoramento Ambiental , Contaminação de Alimentos/legislação & jurisprudência , Humanos , Micotoxinas/análise , Micotoxinas/toxicidade
16.
J Dairy Res ; 83(1): 115-24, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26608755

RESUMO

Lactic acid bacteria (LAB) can be isolated from different sources such as milk and cheese, and the lipolytic, proteolytic and glycolytic enzymes of LAB are important in cheese preservation and in flavour production. Moreover, LAB produce several antimicrobial compounds which make these bacteria interesting for food biopreservation. These characteristics stimulate the search of new strains with technological potential. From 156 milk and cheese samples from cow, buffalo and goat, 815 isolates were obtained on selective agars for LAB. Pure cultures were evaluated for antimicrobial activities by agar antagonism tests and for proteolytic activity on milk proteins by cultivation on agar plates. The most proteolytic isolates were also tested by cultivation in skim milk followed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the fermented milk. Among the 815 tested isolates, three of them identified as Streptococcus uberis (strains FT86, FT126 and FT190) were bacteriocin producers, whereas four other ones identified as Weissella confusa FT424, W. hellenica FT476, Leuconostoc citreum FT671 and Lactobacillus plantarum FT723 showed high antifungal activity in preliminary assays. Complementary analyses showed that the most antifungal strain was L. plantarum FT723 that inhibited Penicillium expansum in modified MRS agar (De Man, Rogosa, Sharpe, without acetate) and fermented milk model, however no inhibition was observed against Yarrowia lipolytica. The proteolytic capacities of three highly proteolytic isolates identified as Enterococcus faecalis (strains FT132 and FT522) and Lactobacillus paracasei FT700 were confirmed by SDS-PAGE, as visualized by the digestion of caseins and whey proteins (ß-lactoglobulin and α-lactalbumin). These results suggest potential applications of these isolates or their activities (proteolytic activity or production of antimicrobials) in dairy foods production.


Assuntos
Bactérias/classificação , Búfalos , Bovinos , Queijo/microbiologia , Cabras , Leite/microbiologia , Animais , Antibacterianos , Antibiose/fisiologia , Bactérias/metabolismo , Brasil , Microbiologia de Alimentos
17.
Int J Food Microbiol ; 215: 187-93, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26320771

RESUMO

Penicillium roqueforti has the ability to produce secondary metabolites, including roquefortine C (ROQC) and mycophenolic acid (MPA). In a previous study, the presence of these mycotoxins, alone or in co-occurrence, has been reported in blue-veined cheese. A high variability of mycotoxin content has also been observed, although the majority of samples exhibited relatively low concentrations. The observed variability raises the question of the factors impacting ROQC and MPA production. In this context, the mycotoxigenic potential of 96 P. roqueforti strains (biotic factor) and the effect of some abiotic factors (pH, temperature, NaCl and O2 contents, and C/N ratio) on mycotoxin production were evaluated. A high intraspecific diversity, established via genotypic (RAPD) and phenotypic (FTIR) approaches, was observed. It was associated with mycotoxigenic potential variability and may thus explain part of the observed variability in mycotoxin content of blue-veined cheese. Moreover, a significant decrease of ROQC and MPA production was observed for conditions (temperature, C/N ratio, O2 and NaCl concentrations) encountered during cheese-making compared with optimal growth conditions. The results also highlighted that there was no significant effect of addition of ROQC amino-acid precursor on the production of both mycotoxins whereas a pH increase from 4.5 to 6.5 slightly reduced MPA but not ROQC production.


Assuntos
Queijo/microbiologia , Indóis/metabolismo , Ácido Micofenólico/biossíntese , Micotoxinas/biossíntese , Penicillium/metabolismo , Queijo/análise , Microbiologia de Alimentos , Compostos Heterocíclicos de 4 ou mais Anéis/metabolismo , Micotoxinas/análise , Piperazinas/metabolismo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Temperatura
18.
Toxicol In Vitro ; 28(5): 940-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24747294

RESUMO

In this study, in vitro cytotoxicity and immunotoxicity of the mycotoxin cyclopiazonic acid (CPA) was evaluated on human cells. To evaluate cytoxicity, several cellular targets were used (CD34+, monocytes, THP-1 and Caco-2). Monocytes were more sensitive to CPA than the THP-1 monocytic cell line after 48h of incubation in the tested conditions. Half maximal inhibitory concentration (IC50) were determined to be 8.5 × 10(-8) and 1.75 × 10(-7)M for monocytes and THP1, respectively, while IC50>1.25 × 10(-7)M was observed for Caco-2 and CD34+ cells. The CPA effect on macrophage differentiation was also examined at non-cytotoxic concentrations. The monocyte differentiation process was markedly disturbed in the presence of CPA. After 6 days of culture, CD71 expression was downregulated, while CD14 and CD11a expressions did not change. Moreover, activated macrophages showed a raised burst activity and TNF-α secretion. Overall, the results indicated that CPA exhibited toxicity on various human cellular models. Moreover, at non-cytotoxic concentrations, CPA disturbed human monocytes differentiation into macrophages. This work contributes to understanding the immunosuppressive properties of this food-related toxin.


Assuntos
Imunossupressores/toxicidade , Indóis/toxicidade , Macrófagos/efeitos dos fármacos , Micotoxinas/toxicidade , Antígenos CD34 , Células CACO-2 , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Macrófagos/citologia , Macrófagos/fisiologia , Explosão Respiratória/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
19.
Compr Rev Food Sci Food Saf ; 13(4): 437-456, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33412699

RESUMO

Important fungi growing on cheese include Penicillium, Aspergillus, Cladosporium, Geotrichum, Mucor, and Trichoderma. For some cheeses, such as Camembert, Roquefort, molds are intentionally added. However, some contaminating or technological fungal species have the potential to produce undesirable metabolites such as mycotoxins. The most hazardous mycotoxins found in cheese, ochratoxin A and aflatoxin M1, are produced by unwanted fungal species either via direct cheese contamination or indirect milk contamination (animal feed contamination), respectively. To date, no human food poisoning cases have been associated with contaminated cheese consumption. However, although some studies state that cheese is an unfavorable matrix for mycotoxin production; these metabolites are actually detected in cheeses at various concentrations. In this context, questions can be raised concerning mycotoxin production in cheese, the biotic and abiotic factors influencing their production, mycotoxin relative toxicity as well as the methods used for detection and quantification. This review emphasizes future challenges that need to be addressed by the scientific community, fungal culture manufacturers, and artisanal and industrial cheese producers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...