Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(4): 114084, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38583154

RESUMO

Eosinophils play a crucial role in host defense while also contributing to immunopathology through the release of inflammatory mediators. Characterized by distinctive cytoplasmic granules, eosinophils securely store and rapidly release various proteins exhibiting high toxicity upon extracellular release. Among these, major basic protein 1 (MBP-1) emerges as an important mediator in eosinophil function against pathogens and in eosinophil-associated diseases. While MBP-1 targets both microorganisms and host cells, its precise mechanism remains elusive. We demonstrate that formation of small pores by MBP-1 in lipid bilayers induces membrane permeabilization and disrupts potassium balance. Additionally, we reveal that mitochondrial DNA (mtDNA) present in eosinophil extracellular traps (EETs) amplifies MBP-1 toxic effects, underscoring the pivotal role of mtDNA in EETs. Furthermore, we present evidence indicating that absence of CpG methylation in mtDNA contributes to the regulation of MBP-1-mediated toxicity. Taken together, our data suggest that the mtDNA scaffold within extracellular traps promotes MBP-1 toxicity.


Assuntos
DNA Mitocondrial , DNA Mitocondrial/metabolismo , DNA Mitocondrial/genética , Humanos , Animais , Armadilhas Extracelulares/metabolismo , Membrana Celular/metabolismo , Eosinófilos/metabolismo , Metilação de DNA , Ilhas de CpG , Bicamadas Lipídicas/metabolismo
2.
Org Biomol Chem ; 21(39): 7908-7912, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37750811

RESUMO

The supramolecular self-assembly of pyrene-DNA conjugates into nanostructures is presented. DNA functionalized with different types of pyrene isomers at the 3'-end self-assemble into nano-objects. The shape of the nanostructures is influenced by the type of pyrene isomer appended to the DNA. Multilamellar vesicles are observed with the 1,6- and 1,8-isomers, whereas conjugates of the 2,7-isomer exclusively assemble into spherical nanoparticles. Self-assembled nano-spheres obtained with the 2,7-dialkynyl pyrene isomer were used for the construction of an artificial light-harvesting complex (LHC) in combination with Cy3 as the energy acceptor.


Assuntos
Nanopartículas , Nanoestruturas , Nanoestruturas/química , DNA/química , Pirenos/química
3.
Bioconjug Chem ; 34(1): 70-77, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35357155

RESUMO

The precise arrangement of structural subunits is a key factor for the proper shape and function of natural and artificial supramolecular assemblies. In DNA nanotechnology, the geometrically well-defined double-stranded DNA scaffold serves as an element of spatial control for the precise arrangement of functional groups. Here, we describe the supramolecular assembly of chemically modified DNA hybrids into diverse types of architectures. An amphiphilic DNA duplex serves as the sole structural building element of the nanosized supramolecular structures. The morphology of the assemblies is governed by a single subunit of the building block. The chemical nature of this subunit, i.e., polyethylene glycols of different chain length or a carbohydrate moiety, exerts a dramatic influence on the architecture of the assemblies. Cryo-electron microscopy revealed the arrangement of the individual DNA duplexes within the different constructs. Thus, the morphology changes from vesicles to ribbons with increasing length of a linear polyethylene glycol. Astoundingly, attachment of a N-acetylgalactosamine carbohydrate to the DNA duplex moiety produces an unprecedented type of star-shaped architecture. The novel DNA architectures presented herein imply an extension of the current concept of DNA materials and shed new light on the fast-growing field of DNA nanotechnology.


Assuntos
DNA , Oligonucleotídeos , Microscopia Crioeletrônica , DNA/química , Polietilenoglicóis , Nanotecnologia
4.
EMBO Rep ; 23(12): e54856, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36215680

RESUMO

Clostridium perfringens is one of the most widely distributed and successful pathogens producing an impressive arsenal of toxins. One of the most potent toxins produced is the C. perfringens ß-toxin (CPB). This toxin is the main virulence factor of type C strains. We describe the cryo-electron microscopy (EM) structure of CPB oligomer. We show that CPB forms homo-octameric pores like the hetero-oligomeric pores of the bi-component leukocidins, with important differences in the receptor binding region and the N-terminal latch domain. Intriguingly, the octameric CPB pore complex contains a second 16-stranded ß-barrel protrusion atop of the cap domain that is formed by the N-termini of the eight protomers. We propose that CPB, together with the newly identified Epx toxins, is a member a new subclass of the hemolysin-like family. In addition, we show that the ß-barrel protrusion domain can be modified without affecting the pore-forming ability, thus making the pore particularly attractive for macromolecule sensing and nanotechnology. The cryo-EM structure of the octameric pore of CPB will facilitate future developments in both nanotechnology and basic research.


Assuntos
Clostridium perfringens , Microscopia Crioeletrônica
5.
Org Biomol Chem ; 20(18): 3703-3707, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35262542

RESUMO

The supramolecular assembly of DNA conjugates, functionalized with tetraphenylethylene (TPE) sticky ends, into vesicular structures is described. The aggregation-induced emission (AIE) active TPE units allow monitoring the assembly process by fluorescence spectroscopy. The number of TPE modifications in the overhangs of the conjugates influences the supramolecular assembly behavior. A minimum of two TPE residues on each end are required to ensure a well-defined assembly process. The design of the presented DNA-based nanostructures offers tailored functionalization with applications in DNA nanotechnology.


Assuntos
DNA , Estilbenos , Sequência de Bases , Nanotecnologia , Estilbenos/química
6.
Toxins (Basel) ; 13(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209983

RESUMO

Ostreolysin A6 (OlyA6) is a protein produced by the oyster mushroom (Pleurotus ostreatus). It binds to membrane sphingomyelin/cholesterol domains, and together with its protein partner, pleurotolysin B (PlyB), it forms 13-meric transmembrane pore complexes. Further, OlyA6 binds 1000 times more strongly to the insect-specific membrane sphingolipid, ceramide phosphoethanolamine (CPE). In concert with PlyB, OlyA6 has potent and selective insecticidal activity against the western corn rootworm. We analysed the histological alterations of the midgut wall columnar epithelium of western corn rootworm larvae fed with OlyA6/PlyB, which showed vacuolisation of the cell cytoplasm, swelling of the apical cell surface into the gut lumen, and delamination of the basal lamina underlying the epithelium. Additionally, cryo-electron microscopy was used to explore the membrane interactions of the OlyA6/PlyB complex using lipid vesicles composed of artificial lipids containing CPE, and western corn rootworm brush border membrane vesicles. Multimeric transmembrane pores were formed in both vesicle preparations, similar to those described for sphingomyelin/cholesterol membranes. These results strongly suggest that the molecular mechanism of insecticidal action of OlyA6/PlyB arises from specific interactions of OlyA6 with CPE, and the consequent formation of transmembrane pores in the insect midgut.


Assuntos
Besouros/efeitos dos fármacos , Proteínas Fúngicas/toxicidade , Proteínas Hemolisinas/toxicidade , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Animais , Besouros/metabolismo , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Larva/metabolismo , Esfingomielinas/metabolismo
7.
RNA Biol ; 18(12): 2617-2632, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34121604

RESUMO

Ribosome-associated non-coding RNAs (rancRNAs) have been recognized as an emerging class of regulatory molecules capable of fine-tuning translation in all domains of life. RancRNAs are ideally suited for allowing a swift response to changing environments and are therefore considered pivotal during the first wave of stress adaptation. Previously, we identified an mRNA-derived 18 nucleotides long rancRNA (rancRNA_18) in Saccharomyces cerevisiae that rapidly downregulates protein synthesis during hyperosmotic stress. However, the molecular mechanism of action remained enigmatic. Here, we combine biochemical, genetic, transcriptome-wide and structural evidence, thus revealing rancRNA_18 as global translation inhibitor by targeting the E-site region of the large ribosomal subunit. Ribosomes carrying rancRNA_18 possess decreased affinity for A-site tRNA and impaired structural dynamics. Cumulatively, these discoveries reveal the mode of action of a rancRNA involved in modulating protein biosynthesis at a thus far unequalled precision.


Assuntos
Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , RNA não Traduzido/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , RNA Mensageiro/genética , RNA de Transferência/genética , RNA não Traduzido/genética , Ribossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
8.
J Cell Sci ; 133(16)2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694165

RESUMO

The radial spoke is a key element in a transducer apparatus controlling the motility of eukaryotic cilia. The transduction biomechanics is a long-standing question in cilia biology. The radial spoke has three regions - a spoke head, a bifurcated neck and a stalk. Although the neck and the stalk are asymmetric, twofold symmetry of the head has remained controversial. In this work we used single particle cryo-electron microscopy (cryo-EM) analysis to generate a 3D structure of the whole radial spoke at unprecedented resolution. We show the head region at 15 Š(1.5 nm) resolution and confirm twofold symmetry. Using distance constraints generated by cross-linking mass spectrometry, we locate two components, RSP2 and RSP4, at the head and neck regions. Our biophysical analysis of isolated RSP4, RSP9, and RSP10 affirmed their oligomeric state. Our results enable us to redefine the boundaries of the regions and propose a model of organization of the radial spoke component proteins.


Assuntos
Chlamydomonas , Axonema , Microscopia Crioeletrônica , Flagelos , Proteínas de Plantas
9.
Nanoscale ; 12(41): 21118-21123, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-32614024

RESUMO

The self-assembly of DNA hybrids possessing tetraphenylethylene sticky ends at both sides into vesicular architectures in aqueous medium is demonstrated. Cryo-electron microscopy reveals the formation of different types of morphologies from the amphiphilic DNA-hybrids. Depending on the conditions, either an extended (sheet-like) or a compact (columnar) alignment of the DNA hybrids is observed. The different modes of DNA arrangement lead to the formation of vesicles appearing either as prolate ellipsoids (type I) or as spheres (type II). The type of packing has a significant effect on the accessibility of the DNA, as evidenced by intercalation and light-harvesting experiments. Only the vesicles exhibiting the sheet-like DNA alignment are accessible for intercalation by ethidium bromide or for the integration of chromophore-labelled DNA via a strand exchange process. The dynamic nature of type I vesicles enables their elaboration into artificial light-harvesting complexes by DNA-guided introduction of Cy3-acceptor chromophores. DNA-constructed vesicles of the kind shown here represent versatile intermediates that are amenable to further modification for tailored nanotechnology applications.


Assuntos
DNA , Nanotecnologia , Microscopia Crioeletrônica
10.
Biomater Sci ; 7(9): 3693-3705, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31187801

RESUMO

Protein-membrane interactions that modify the shape of membranes are important for generating curvature, membrane deformation by protein-protein crowding or trafficking of vesicles. Giant vesicles represent a simplified but versatile model for biological membranes and are commonly employed for the study of lipid domains and permeation across compartments. In this study, we investigated the interaction of pneumolysin (PLY), a pore-forming toxin secreted by Streptococcus pneumoniae, with multilamellar and unilamellar membranes. It reveals an enlargement of membrane area due to the insertion of pores into the bilayer and protein-membrane aggregations that induce membrane deformation and wrinkling. Moreover, we demonstrate that PLY peel-off layers from multilamellar giant vesicles in a hitherto unknown layer-by-layer peeling mechanism, which reveals the structure and number of membrane lamellae. We employed microfluidic methods to capture giant vesicles and confocal laser scanning microscopy, transmission microscopy, dynamic light scattering and cryo-electron microscopy to disclose the structure of multilamellar vesicles. Based on our findings we suggest how back-to-back pore arrangements stabilize large PLY-membrane entities and that pore-displaced lipids possibly remain in the membrane.


Assuntos
Membrana Celular/química , Streptococcus pneumoniae/química , Estreptolisinas/química , Lipossomas Unilamelares/química , Proteínas de Bactérias/química
11.
Nat Commun ; 7: 12062, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27405240

RESUMO

Owing to their pathogenical role and unique ability to exist both as soluble proteins and transmembrane complexes, pore-forming toxins (PFTs) have been a focus of microbiologists and structural biologists for decades. PFTs are generally secreted as water-soluble monomers and subsequently bind the membrane of target cells. Then, they assemble into circular oligomers, which undergo conformational changes that allow membrane insertion leading to pore formation and potentially cell death. Aerolysin, produced by the human pathogen Aeromonas hydrophila, is the founding member of a major PFT family found throughout all kingdoms of life. We report cryo-electron microscopy structures of three conformational intermediates and of the final aerolysin pore, jointly providing insight into the conformational changes that allow pore formation. Moreover, the structures reveal a protein fold consisting of two concentric ß-barrels, tightly kept together by hydrophobic interactions. This fold suggests a basis for the prion-like ultrastability of aerolysin pore and its stoichiometry.


Assuntos
Microscopia Crioeletrônica , Proteínas Citotóxicas Formadoras de Poros/ultraestrutura , Estrutura Terciária de Proteína , Aeromonas hydrophila , Toxinas Bacterianas , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Processamento de Imagem Assistida por Computador , Modelos Moleculares , Dobramento de Proteína
12.
Biophys J ; 110(7): 1574-1581, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27074682

RESUMO

Many biological processes depend on the sequential assembly of protein complexes. However, studying the kinetics of such processes by direct methods is often not feasible. As an important class of such protein complexes, pore-forming toxins start their journey as soluble monomeric proteins, and oligomerize into transmembrane complexes to eventually form pores in the target cell membrane. Here, we monitored pore formation kinetics for the well-characterized bacterial pore-forming toxin aerolysin in single cells in real time to determine the lag times leading to the formation of the first functional pores per cell. Probabilistic modeling of these lag times revealed that one slow and seven equally fast rate-limiting reactions best explain the overall pore formation kinetics. The model predicted that monomer activation is the rate-limiting step for the entire pore formation process. We hypothesized that this could be through release of a propeptide and indeed found that peptide removal abolished these steps. This study illustrates how stochasticity in the kinetics of a complex process can be exploited to identify rate-limiting mechanisms underlying multistep biomolecular assembly pathways.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Modelos Moleculares , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Análise de Célula Única/métodos , Eritrócitos/citologia , Humanos , Cinética , Fragmentos de Peptídeos/metabolismo
13.
J Struct Biol ; 185(1): 125-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24269483

RESUMO

A close to native structure of bulk biological specimens can be imaged by cryo-electron microscopy of vitreous sections (CEMOVIS). In some cases structural information can be combined with X-ray data leading to atomic resolution in situ. However, CEMOVIS is not routinely used. The two critical steps consist of producing a frozen section ribbon of a few millimeters in length and transferring the ribbon onto an electron microscopy grid. During these steps, the first sections of the ribbon are wrapped around an eyelash (unwrapping is frequent). When a ribbon is sufficiently attached to the eyelash, the operator must guide the nascent ribbon. Steady hands are required. Shaking or overstretching may break the ribbon. In turn, the ribbon immediately wraps around itself or flies away and thereby becomes unusable. Micromanipulators for eyelashes and grids as well as ionizers to attach section ribbons to grids were proposed. The rate of successful ribbon collection, however, remained low for most operators. Here we present a setup composed of two micromanipulators. One of the micromanipulators guides an electrically conductive fiber to which the ribbon sticks with unprecedented efficiency in comparison to a not conductive eyelash. The second micromanipulator positions the grid beneath the newly formed section ribbon and with the help of an ionizer the ribbon is attached to the grid. Although manipulations are greatly facilitated, sectioning artifacts remain but the likelihood to investigate high quality sections is significantly increased due to the large number of sections that can be produced with the reported tool.


Assuntos
Microscopia Crioeletrônica/instrumentação , Secções Congeladas/instrumentação , Micromanipulação/instrumentação , Artefatos , Microscopia Crioeletrônica/métodos , Crioultramicrotomia/instrumentação , Crioultramicrotomia/métodos , Secções Congeladas/métodos , Micromanipulação/métodos , Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/ultraestrutura
14.
Nat Chem Biol ; 9(10): 623-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23912165

RESUMO

Aerolysin is the founding member of a superfamily of ß-pore-forming toxins whose pore structure is unknown. We have combined X-ray crystallography, cryo-EM, molecular dynamics and computational modeling to determine the structures of aerolysin mutants in their monomeric and heptameric forms, trapped at various stages of the pore formation process. A dynamic modeling approach based on swarm intelligence was applied, whereby the intrinsic flexibility of aerolysin extracted from new X-ray structures was used to fully exploit the cryo-EM spatial restraints. Using this integrated strategy, we obtained a radically new arrangement of the prepore conformation and a near-atomistic structure of the aerolysin pore, which is fully consistent with all of the biochemical data available so far. Upon transition from the prepore to pore, the aerolysin heptamer shows a unique concerted swirling movement, accompanied by a vertical collapse of the complex, ultimately leading to the insertion of a transmembrane ß-barrel.


Assuntos
Aeromonas salmonicida/química , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Toxinas Bacterianas/genética , Cristalografia por Raios X , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação Puntual , Proteínas Citotóxicas Formadoras de Poros/genética , Conformação Proteica
15.
Cell Host Microbe ; 12(3): 266-75, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22980324

RESUMO

Organisms from all kingdoms produce pore-forming proteins, with the best-characterized being of bacterial origin. The last decade of research has revealed that the channels formed by these proteins can be very diverse, thus differentially affecting target cell-membrane permeability and consequent cellular outcome. The responses to these toxins are also extremely diverse due to multiple downstream effects of pore-induced changes in ion balance. Determining the secondary effects of pore-forming toxins is essential to understand their contribution to infection.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas Citotóxicas Formadoras de Poros/toxicidade , Animais , Bactérias/metabolismo , Permeabilidade da Membrana Celular , Humanos , Íons/metabolismo
16.
PLoS Pathog ; 7(9): e1002259, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21980286

RESUMO

Pseudomonas entomophila is an entomopathogenic bacterium that infects and kills Drosophila. P. entomophila pathogenicity is linked to its ability to cause irreversible damages to the Drosophila gut, preventing epithelium renewal and repair. Here we report the identification of a novel pore-forming toxin (PFT), Monalysin, which contributes to the virulence of P. entomophila against Drosophila. Our data show that Monalysin requires N-terminal cleavage to become fully active, forms oligomers in vitro, and induces pore-formation in artificial lipid membranes. The prediction of the secondary structure of the membrane-spanning domain indicates that Monalysin is a PFT of the ß-type. The expression of Monalysin is regulated by both the GacS/GacA two-component system and the Pvf regulator, two signaling systems that control P. entomophila pathogenicity. In addition, AprA, a metallo-protease secreted by P. entomophila, can induce the rapid cleavage of pro-Monalysin into its active form. Reduced cell death is observed upon infection with a mutant deficient in Monalysin production showing that Monalysin plays a role in P. entomophila ability to induce intestinal cell damages, which is consistent with its activity as a PFT. Our study together with the well-established action of Bacillus thuringiensis Cry toxins suggests that production of PFTs is a common strategy of entomopathogens to disrupt insect gut homeostasis.


Assuntos
Toxinas Bacterianas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Pseudomonas/metabolismo , Pseudomonas/patogenicidade , Animais , Toxinas Bacterianas/genética , Linhagem Celular , Drosophila melanogaster , Regulação Bacteriana da Expressão Gênica/fisiologia , Enteropatias/genética , Enteropatias/metabolismo , Enteropatias/microbiologia , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Estrutura Terciária de Proteína , Pseudomonas/genética
17.
PLoS Pathog ; 7(7): e1002135, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21779171

RESUMO

Throughout evolution, one of the most ancient forms of aggression between cells or organisms has been the production of proteins or peptides affecting the permeability of the target cell membrane. This class of virulence factors includes the largest family of bacterial toxins, the pore-forming toxins (PFTs). PFTs are bistable structures that can exist in a soluble and a transmembrane state. It is unclear what drives biosynthetic folding towards the soluble state, a requirement that is essential to protect the PFT-producing cell. Here we have investigated the folding of aerolysin, produced by the human pathogen Aeromonas hydrophila, and more specifically the role of the C-terminal propeptide (CTP). By combining the predictive power of computational techniques with experimental validation using both structural and functional approaches, we show that the CTP prevents aggregation during biosynthetic folding. We identified specific residues that mediate binding of the CTP to the toxin. We show that the CTP is crucial for the control of the aerolysin activity, since it protects individual subunits from aggregation within the bacterium and later controls assembly of the quaternary pore-forming complex at the surface of the target host cell. The CTP is the first example of a C-terminal chain-linked chaperone with dual function.


Assuntos
Aeromonas hydrophila/metabolismo , Toxinas Bacterianas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Dobramento de Proteína , Multimerização Proteica/fisiologia , Precursores de Proteínas/metabolismo , Aeromonas hydrophila/genética , Toxinas Bacterianas/genética , Humanos , Chaperonas Moleculares/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Precursores de Proteínas/genética , Estrutura Terciária de Proteína
18.
PLoS One ; 6(6): e20349, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21687664

RESUMO

A number of bacterial virulence factors have been observed to adopt structures similar to that of aerolysin, the principal toxin of Aeromonas species. However, a comprehensive description of architecture and structure of the aerolysin-like superfamily has not been determined. In this study, we define a more compact aerolysin-like domain--or aerolysin fold--and show that this domain is far more widely spread than anticipated since it can be found throughout kingdoms. The aerolysin-fold could be found in very diverse domain and functional contexts, although a toxic function could often be assigned. Due to this diversity, the borders of the superfamily could not be set on a sequence level. As a border-defining member, we therefore chose pXO2-60--a protein from the pathogenic pXO2 plasmid of Bacillus anthracis. This fascinating protein, which harbors a unique ubiquitin-like fold domain at the C-terminus of the aerolysin-domain, nicely illustrates the diversity of the superfamily. Its putative role in the virulence of B. anthracis and its three dimensional model are discussed.


Assuntos
Bactérias , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Vertebrados , Sequência de Aminoácidos , Animais , Sequência Conservada , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Especificidade da Espécie
19.
Curr Opin Struct Biol ; 20(2): 241-6, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20172710

RESUMO

Pore-forming proteins (PFPs), involved in host-pathogen interactions, are produced as soluble, generally monomeric, proteins. To convert from the soluble to the transmembrane form, PFPs assemble, in the vicinity of the target membrane, into ring-like structures, which expose sufficient hydrophobicity to drive spontaneous bilayer insertion. Recent findings have highlighted two interesting aspects: (1) that pores form via similar overall mechanisms even if originating from vastly different structures and (2) specific folds found in PFPs can be found in widely different organisms, as distant as prokaryotes and mammals, highlighting that pore formation is an ancient form of attack that has been remarkably conserved.


Assuntos
Porinas/química , Animais , Humanos , Modelos Biológicos , Porinas/metabolismo , Conformação Proteica , Dobramento de Proteína
20.
J Struct Biol ; 169(3): 370-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19963066

RESUMO

Among the state-of-the-art techniques that provide experimental information at atomic scale for membrane proteins, electron crystallography, atomic force microscopy and solid state NMR make use of two-dimensional crystals. We present a cyclodextrin-driven method for detergent removal implemented in a fully automated robot. The kinetics of the reconstitution processes is precisely controlled, because the detergent complexation by cyclodextrin is of stoichiometric nature. The method requires smaller volumes and lower protein concentrations than established 2D crystallization methods, making it possible to explore more conditions with the same amount of protein. The method yielded highly ordered 2D crystals diffracting to high resolution from the pore-forming toxin Aeromonas hydrophila aerolysin (2.9A), the plant aquaporin SoPIP2;1 (3.1A) and the human aquaporin-8 (hAQP8; 3.3A). This new method outperforms traditional 2D crystallization approaches in terms of accuracy, flexibility, throughput, and allows the usage of detergents having low critical micelle concentration (CMC), which stabilize the structure of membrane proteins in solution.


Assuntos
Cristalização/métodos , Proteínas de Membrana/química , Aeromonas hydrophila/metabolismo , Animais , Aquaporinas/química , Aquaporinas/isolamento & purificação , Aquaporinas/ultraestrutura , Toxinas Bacterianas/química , Toxinas Bacterianas/isolamento & purificação , Microscopia Crioeletrônica , Cristalização/instrumentação , Ciclodextrinas/química , Humanos , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/ultraestrutura , Microscopia Eletrônica de Transmissão , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/isolamento & purificação , Proteínas Citotóxicas Formadoras de Poros/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...