Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21259398

RESUMO

Previous studies have described RT-LAMP methodology for the rapid detection of SARS-CoV-2 in nasopharyngeal (NP) and oropharyngeal (OP) swab and saliva samples. This study describes the validation of an improved sample preparation method for extraction free RT-LAMP and defines the clinical performance of four different RT-LAMP assay formats for detection of SARS-CoV-2 within a multisite clinical evaluation. Direct RT-LAMP was performed on 559 swabs and 86,760 saliva samples and RNA RT-LAMP on extracted RNA from 12,619 swabs and 12,521 saliva from asymptomatic and symptomatic individuals across healthcare and community settings. For Direct RT-LAMP, overall diagnostic sensitivity (DSe) of 70.35% (95% CI 63.48-76.60%) on swabs and 84.62% (79.50-88.88%) on saliva was observed, with diagnostic specificity (DSp) of 100% (98.98-100.00%) on swabs and 100% (99.72-100.00%) on saliva when compared to RT-qPCR; analysing samples with RT-qPCR ORF1ab CT values of [≤]25 and [≤]33, DSe of 100% (96.34-100%) and 77.78% (70.99-83.62%) for swabs were observed, and 99.01% (94.61-99.97%) and 87.61% (82.69-91.54%) for saliva, respectively. For RNA RT-LAMP, overall DSe and DSp were 96.06% (92.88-98.12%) and 99.99% (99.95-100%) for swabs, and 80.65% (73.54-86.54%) and 99.99% (99.95-100%) for saliva, respectively. These findings demonstrate that RT-LAMP is applicable to a variety of use-cases, including frequent, interval-based testing of saliva with Direct RT-LAMP from asymptomatic individuals that may otherwise be missed using symptomatic testing alone.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-426875

RESUMO

We present a small molecule chemotype, identified by an orthogonal drug screen, exhibiting nanomolar activity against members of all the six viral families causing most human respiratory viral disease, with a demonstrated barrier to resistance development. Antiviral activity is shown in mammalian cells, including human primary bronchial epithelial cells cultured to an air-liquid interface and infected with SARS-CoV-2. In animals, efficacy of early compounds in the lead series is shown by survival (for a coronavirus) and viral load (for a paramyxovirus). The drug target is shown to include a subset of the protein 14-3-3 within a transient host multi-protein complex containing components implicated in viral lifecycles and in innate immunity. This multi-protein complex is modified upon viral infection and largely restored by drug treatment. Our findings suggest a new clinical therapeutic strategy for early treatment upon upper respiratory viral infection to prevent progression to lower respiratory tract or systemic disease. One Sentence SummaryA host-targeted drug to treat all respiratory viruses without viral resistance development.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20155168

RESUMO

We describe the optimization of a simplified sample preparation method which permits rapid and direct detection of SARS-CoV-2 RNA within saliva using reverse-transcription loop-mediated isothermal amplification (RT-LAMP). Treatment of saliva samples prior to RT-LAMP by dilution 1:1 in Mucolyse, followed by dilution (within the range of 1:5 to 1:40) in 10% (w/v) Chelex(C) 100 Resin and a 98{degrees}C heat step for 2 minutes enabled detection of SARS-CoV-2 RNA in all positive saliva samples tested, with no amplification detected in pooled negative saliva. The time to positivity for which SARS- CoV-2 RNA was detected in these positive saliva samples was proportional to the real-time reverse- transcriptase PCR cycle threshold (CT), with SARS-CoV-2 RNA detected in as little as 05:43 (CT 21.08), 07:59 (CT 24.47) and 08:35 (CT 25.27) minutes, respectively. The highest CT where direct RT-LAMP detected SARS-CoV-2 RNA was 31.39 corresponding to a 1:40 dilution of a positive saliva sample with a starting CT of 25.27. When RT-LAMP was performed on pools of SARS-CoV-2 negative saliva samples spiked with whole inactivated SARS-CoV-2 virus, RNA was detected at dilutions spanning 1:5 to 1:160 representing CTs spanning 22.49-26.43. Here we describe a simple but critical rapid sample preparation method which can be used up front of RT-LAMP to permit direct detection of SARS-CoV- 2 within saliva samples. Saliva is a sample which can be collected non-invasively without the use of highly skilled staff and critically can be obtained from both health care and home settings. Critically, this approach overcomes both the requirement and validation of different swabs and the global bottleneck observed in obtaining RNA extraction robots and reagents to enable molecular testing by PCR. Such testing opens the possibility of public health approaches for effective intervention to control the COVID-19 pandemic through regular SARS-CoV-2 testing at a population scale, combined with isolation and contact tracing for positive cases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...