Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-448814

RESUMO

Pre-existing comorbidities such as obesity or metabolic diseases can adversely affect the clinical outcome of COVID-19. Chronic metabolic disorders are globally on the rise and often a consequence of an unhealthy diet, referred to as a Western Diet. For the first time in the Syrian hamster model, we demonstrate the detrimental impact of a continuous high-fat high-sugar diet on COVID-19 outcome. We observed increased weight loss and lung pathology, such as exudate, vasculitis, hemorrhage, fibrin, and edema, delayed viral clearance and functional lung recovery, and prolonged viral shedding. This was accompanied by an increased trend of systemic IL-10 and IL-6, as well as a dysregulated serum lipid response dominated by polyunsaturated fatty acid-containing phosphatidylethanolamine, recapitulating cytokine and lipid responses associated with severe human COVID-19. Our data support the hamster model for testing restrictive or targeted diets and immunomodulatory therapies to mediate the adverse effects of metabolic disease on COVID-19.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20149849

RESUMO

Introductory ParagraphThe COVID-19 pandemic has affected more than 10 million people worldwide with mortality exceeding half a million patients. Risk factors associated with severe disease and mortality include advanced age, hypertension, diabetes, and obesity.1 Clear mechanistic understanding of how these comorbidities converge to enable severe infection is lacking. Notably each of these risk factors pathologically disrupts the lipidome and this disruption may be a unifying feature of severe COVID-19.1-7 Here we provide the first in depth interrogation of lipidomic changes, including structural-lipids as well as the eicosanoids and docosanoids lipid mediators (LMs), that mark COVID-19 disease severity. Our data reveal that progression from moderate to severe disease is marked by a loss of specific immune regulatory LMs and increased pro-inflammatory species. Given the important immune regulatory role of LMs, these data provide mechanistic insight into the immune balance in COVID-19 and potential targets for therapy with currently approved pharmaceuticals.8

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-043166

RESUMO

BackgroundEffective therapeutics to treat COVID-19 are urgently needed. Remdesivir is a nucleotide prodrug with in vitro and in vivo efficacy against coronaviruses. Here, we tested the efficacy of remdesivir treatment in a rhesus macaque model of SARS-CoV-2 infection. MethodsTo evaluate the effect of remdesivir treatment on SARS-CoV-2 disease outcome, we used the recently established rhesus macaque model of SARS-CoV-2 infection that results in transient lower respiratory tract disease. Two groups of six rhesus macaques were infected with SARS-CoV-2 and treated with intravenous remdesivir or an equal volume of vehicle solution once daily. Clinical, virological and histological parameters were assessed regularly during the study and at necropsy to determine treatment efficacy. ResultsIn contrast to vehicle-treated animals, animals treated with remdesivir did not show signs of respiratory disease and had reduced pulmonary infiltrates on radiographs. Virus titers in bronchoalveolar lavages were significantly reduced as early as 12hrs after the first treatment was administered. At necropsy on day 7 after inoculation, lung viral loads of remdesivir-treated animals were significantly lower and there was a clear reduction in damage to the lung tissue. ConclusionsTherapeutic remdesivir treatment initiated early during infection has a clear clinical benefit in SARS-CoV-2-infected rhesus macaques. These data support early remdesivir treatment initiation in COVID-19 patients to prevent progression to severe pneumonia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA