Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35268992

RESUMO

Hexagonal boron-nitride nanoparticle coating was deposited on AISI 1045 steel surface. The deposition process included a transformation of B-containing thin organic film into nanocrystalline BN using two methods: thermal annealing at 450-850 °C and reactive ion etching in Ar/N2 plasma. The film structure, phases, and film morphology of deposited nanoparticles of boron nitride on AISI 1045 steel were characterized by XPS, XRD, and EDS. Post-annealing at 450 °C does not lead to the formation of a BN phase in the layer. A non-stoichiometric BN phase with nitrogen deficiency appears at 650 °C. At 850 °C annealing, the formed BN phase is completely stoichiometric. The effects of deposited and incorporated BN on the friction and hardness properties of AISI 1045 steel were also studied. The post-annealing process improved the hardness from 5.35 to 11.4 GPa, showing a pronounced linear temperature dependence. An original approach was adopted to quantify the energy-dependent growth constants based on the indentation load-discharge curves measured on samples treated under different conditions. Those constants describe the rate of the reactions and the type of interdiffusion process characteristic for each material used. This approach can partially fulfill the role of the Rutherford backscattering spectrometry profile, which is an expensive and time-consuming process, mainly when light elements such as boron and nitrogen are used.

2.
Acta Bioeng Biomech ; 22(1): 31-39, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32307450

RESUMO

PURPOSE: Most of the orthodontic archwires used in the clinical practice nowadays contain nickel (Ni), however, many patients, especially kids, are allergic to Ni. One possible Ni-free alternative is the Titanium-Niobium (Ti-Nb) archwire. Unfortunately, there is not enough information about its mechanical properties in the literature, especially after clinical usage. Therefore, the aim of this work was to investigate and compare the mechanical properties, chemical composition, structure and morphology of as received and used in clinical practice Ti-Nb orthodontic archwires. MATERIALS AND METHODS: We investigated and compared as received and clinically retrieved after 4 and 6 weeks respectively Ti-Nb archwires with dimensions 0.43 × 0.64 mm (0.017 in. × 0.025 in.). The following methods were used: instrumented indentation testing (nanoindentation), X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. RESULTS: The nanoindentation investigations of as received and used Ti-Nb archwires revealed a decreasing in their indentation hardness with increased periods of use in the patient's mouth. Moreover, an increasing of the concentration of Ti in the content of the TiNb alloy was associated with an increased period of use in the oral cavity. The SEM analysis showed changes in surface morphology with increasing the period of use of the archwires. CONCLUSIONS: The results showed that there are slight changes in the mechanical and physicochemical properties of the investigated wires after their use in the patient's mouth. That is why we do not recommend them for recycling.


Assuntos
Ligas/química , Fenômenos Químicos , Fios Ortodônticos , Fenômenos Biomecânicos , Elementos Químicos , Microscopia Eletrônica de Varredura , Nanotecnologia , Espectroscopia Fotoeletrônica , Espectrometria por Raios X , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...