Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Prog Neurobiol ; 231: 102537, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37832714

RESUMO

Classical neurophysiology suggests that the motor cortex (MI) has a unique role in action control. In contrast, this review presents evidence for multiple parieto-frontal spinal command modules that can bypass MI. Five observations support this modular perspective: (i) the statistics of cortical connectivity demonstrate functionally-related clusters of cortical areas, defining functional modules in the premotor, cingulate, and parietal cortices; (ii) different corticospinal pathways originate from the above areas, each with a distinct range of conduction velocities; (iii) the activation time of each module varies depending on task, and different modules can be activated simultaneously; (iv) a modular architecture with direct motor output is faster and less metabolically expensive than an architecture that relies on MI, given the slow connections between MI and other cortical areas; (v) lesions of the areas composing parieto-frontal modules have different effects from lesions of MI. Here we provide examples of six cortico-spinal modules and functions they subserve: module 1) arm reaching, tool use and object construction; module 2) spatial navigation and locomotion; module 3) grasping and observation of hand and mouth actions; module 4) action initiation, motor sequences, time encoding; module 5) conditional motor association and learning, action plan switching and action inhibition; module 6) planning defensive actions. These modules can serve as a library of tools to be recombined when faced with novel tasks, and MI might serve as a recombinatory hub. In conclusion, the availability of locally-stored information and multiple outflow paths supports the physiological plausibility of the proposed modular perspective.


Assuntos
Mãos , Lobo Parietal , Humanos , Lobo Parietal/fisiologia , Cognição
2.
Nat Neurosci ; 25(11): 1396-1398, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36303072
3.
Cereb Cortex ; 32(10): 2231-2244, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-34668519

RESUMO

Abrupt increases of sensory input (onsets) likely reflect the occurrence of novel events or objects in the environment, potentially requiring immediate behavioral responses. Accordingly, onsets elicit a transient and widespread modulation of ongoing electrocortical activity: the Vertex Potential (VP), which is likely related to the optimisation of rapid behavioral responses. In contrast, the functional significance of the brain response elicited by abrupt decreases of sensory input (offsets) is more elusive, and a detailed comparison of onset and offset VPs is lacking. In four experiments conducted on 44 humans, we observed that onset and offset VPs share several phenomenological and functional properties: they (1) have highly similar scalp topographies across time, (2) are both largely comprised of supramodal neural activity, (3) are both highly sensitive to surprise and (4) co-occur with similar modulations of ongoing motor output. These results demonstrate that the onset and offset VPs largely reflect the activity of a common supramodal brain network, likely consequent to the activation of the extralemniscal sensory system which runs in parallel with core sensory pathways. The transient activation of this system has clear implications in optimizing the behavioral responses to surprising environmental changes.


Assuntos
Encéfalo , Cabeça , Encéfalo/fisiologia , Eletroencefalografia , Humanos
4.
Cereb Cortex ; 31(2): 949-960, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33026425

RESUMO

Living in rapidly changing environments has shaped the mammalian brain toward high sensitivity to abrupt and intense sensory events-often signaling threats or affordances requiring swift reactions. Unsurprisingly, such events elicit a widespread electrocortical response (the vertex potential, VP), likely related to the preparation of appropriate behavioral reactions. Although the VP magnitude is largely determined by stimulus intensity, the relative contribution of the differential and absolute components of intensity remains unknown. Here, we dissociated the effects of these two components. We systematically varied the size of abrupt intensity increases embedded within continuous stimulation at different absolute intensities, while recording brain activity in humans (with scalp electroencephalography) and rats (with epidural electrocorticography). We obtained three main results. 1) VP magnitude largely depends on differential, and not absolute, stimulus intensity. This result held true, 2) for both auditory and somatosensory stimuli, indicating that sensitivity to differential intensity is supramodal, and 3) in both humans and rats, suggesting that sensitivity to abrupt intensity differentials is phylogenetically well-conserved. Altogether, the current results show that these large electrocortical responses are most sensitive to the detection of sensory changes that more likely signal the sudden appearance of novel objects or events in the environment.


Assuntos
Encéfalo/fisiologia , Estimulação Acústica , Adulto , Idoso , Animais , Comportamento/fisiologia , Comportamento Animal/fisiologia , Eletrocorticografia , Eletroencefalografia , Potenciais Evocados/fisiologia , Potenciais Evocados Auditivos/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Adulto Jovem
5.
J Neurophysiol ; 125(2): 509-521, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33174497

RESUMO

Spatial EEG filters are widely used to isolate event-related potential (ERP) components. The most commonly used spatial filters (e.g., the average reference and the surface Laplacian) are "stationary." Stationary filters are conceptually simple, easy to use, and fast to compute, but all assume that the EEG signal does not change across sensors and time. Given that ERPs are intrinsically nonstationary, applying stationary filters can lead to misinterpretations of the measured neural activity. In contrast, "adaptive" spatial filters (e.g., independent component analysis, ICA; and principal component analysis, PCA) infer their weights directly from the spatial properties of the data. They are, thus, not affected by the shortcomings of stationary filters. The issue with adaptive filters is that understanding how they work and how to interpret their output require advanced statistical and physiological knowledge. Here, we describe a novel, easy-to-use, and conceptually simple adaptive filter (local spatial analysis, LSA) for highlighting local components masked by large widespread activity. This approach exploits the statistical information stored in the trial-by-trial variability of stimulus-evoked neural activity to estimate the spatial filter parameters adaptively at each time point. Using both simulated data and real ERPs elicited by stimuli of four different sensory modalities (audition, vision, touch, and pain), we show that this method outperforms widely used stationary filters and allows to identify novel ERP components masked by large widespread activity. Implementation of the LSA filter in MATLAB is freely available to download.NEW & NOTEWORTHY EEG spatial filtering is important for exploring brain function. Two classes of filters are commonly used: stationary and adaptive. Stationary filters are simple to use but wrongly assume that stimulus-evoked EEG responses (ERPs) are stationary. Adaptive filters do not make this assumption but require solid statistical and physiological knowledge. Bridging this gap, we present local spatial analysis (LSA), an adaptive, yet computationally simple, spatial filter based on linear regression that separates local and widespread brain activity (https://www.iannettilab.net/lsa.html or https://github.com/rorybufacchi/LSA-filter).


Assuntos
Eletroencefalografia/métodos , Análise Espacial , Potenciais Evocados , Humanos
6.
J Neurosci ; 40(17): 3478-3490, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32241836

RESUMO

Gamma-band oscillations (GBOs) elicited by transient nociceptive stimuli are one of the most promising biomarkers of pain across species. Still, whether these GBOs reflect stimulus encoding in the primary somatosensory cortex (S1) or nocifensive behavior in the primary motor cortex (M1) is debated. Here we recorded neural activity simultaneously from the brain surface as well as at different depths of the bilateral S1/M1 in freely-moving male rats receiving nociceptive stimulation. GBOs measured from superficial layers of S1 contralateral to the stimulated paw not only had the largest magnitude, but also showed the strongest temporal and phase coupling with epidural GBOs. Also, spiking of superficial S1 interneurons had the strongest phase coherence with epidural GBOs. These results provide the first direct demonstration that scalp GBOs, one of the most promising pain biomarkers, reflect neural activity strongly coupled with the fast spiking of interneurons in the superficial layers of the S1 contralateral to the stimulated side.SIGNIFICANCE STATEMENT Nociceptive-induced gamma-band oscillations (GBOs) measured at population level are one of the most promising biomarkers of pain perception. Our results provide the direct demonstration that these GBOs reflect neural activity coupled with the spike firing of interneurons in the superficial layers of the primary somatosensory cortex (S1) contralateral to the side of nociceptive stimulation. These results address the ongoing debate about whether nociceptive-induced GBOs recorded with scalp EEG or epidurally reflect stimulus encoding in the S1 or nocifensive behavior in the primary motor cortex (M1), and will therefore influence how experiments in pain neuroscience will be designed and interpreted.


Assuntos
Ritmo Gama/fisiologia , Córtex Motor/fisiopatologia , Nociceptividade/fisiologia , Dor/fisiopatologia , Córtex Somatossensorial/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Potenciais Somatossensoriais Evocados/fisiologia , Interneurônios/fisiologia , Masculino , Percepção da Dor/fisiologia , Ratos
7.
Neuroimage ; 195: 396-408, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30946953

RESUMO

Pain inhibition by additional somatosensory input is the rationale for the widespread use of Transcutaneous Electrical Nerve Stimulation (TENS) to relieve pain. Two main types of TENS produce analgesia in animal models: high-frequency (∼50-100 Hz) and low-intensity 'conventional' TENS, and low-frequency (∼2-4 Hz) and high-intensity 'acupuncture-like' TENS. However, TENS efficacy in human participants is debated, raising the question of whether the analgesic mechanisms identified in animal models are valid in humans. Here, we used a sham-controlled experimental design to clarify the efficacy and the neurobiological effects of 'conventional' and 'acupuncture-like' TENS in 80 human volunteers. To test the analgesic effect of TENS we recorded the perceptual and brain responses elicited by radiant heat laser pulses that activate selectively Aδ and C cutaneous nociceptors. To test whether TENS has a long-lasting effect on brain state we recorded spontaneous electrocortical oscillations. The analgesic effect of 'conventional' TENS was maximal when nociceptive stimuli were delivered homotopically, to the same hand that received the TENS. In contrast, 'acupuncture-like' TENS produced a spatially-diffuse analgesic effect, coupled with long-lasting changes both in the state of the primary sensorimotor cortex (S1/M1) and in the functional connectivity between S1/M1 and the medial prefrontal cortex, a core region in the descending pain inhibitory system. These results demonstrate that 'conventional' and 'acupuncture-like' TENS have different analgesic effects, which are mediated by different neurobiological mechanisms.


Assuntos
Encéfalo/fisiologia , Estimulação Elétrica Nervosa Transcutânea/métodos , Adolescente , Adulto , Analgesia/métodos , Eletroencefalografia , Feminino , Humanos , Masculino , Adulto Jovem
8.
Cereb Cortex ; 29(5): 2211-2227, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30844052

RESUMO

How pain emerges in the human brain remains an unresolved question. Neuroimaging studies have suggested that several brain areas subserve pain perception because their activation correlates with perceived pain intensity. However, painful stimuli are often intense and highly salient; therefore, using both intensity- and saliency-matched control stimuli is crucial to isolate pain-selective brain responses. Here, we used these intensity/saliency-matched painful and non-painful stimuli to test whether pain-selective information can be isolated in the functional magnetic resonance imaging responses elicited by painful stimuli. Using two independent datasets, multivariate pattern analysis was able to isolate features distinguishing the responses triggered by (1) intensity/saliency-matched painful versus non-painful stimuli, and (2) high versus low-intensity/saliency stimuli regardless of whether they elicit pain. This indicates that neural activity in the so-called "pain matrix" is functionally heterogeneous, and part of it carries information related to both painfulness and intensity/saliency. The response features distinguishing these aspects are spatially distributed and cannot be ascribed to specific brain structures.


Assuntos
Encéfalo/fisiologia , Percepção da Dor/fisiologia , Adolescente , Adulto , Percepção Auditiva/fisiologia , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Dor/fisiopatologia , Estimulação Física , Percepção do Tato/fisiologia , Percepção Visual/fisiologia , Adulto Jovem
9.
Sci Rep ; 9(1): 3661, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842481

RESUMO

Subcortical reflexive motor responses are under continuous cortical control to produce the most effective behaviour. For example, the excitability of brainstem circuitry subserving the defensive hand-blink reflex (HBR), a response elicited by intense somatosensory stimuli to the wrist, depends on a number of properties of the eliciting stimulus. These include face-hand proximity, which has allowed the description of an HBR response field around the face (commonly referred to as a defensive peripersonal space, DPPS), as well as stimulus movement and probability of stimulus occurrence. However, the effect of stimulus-independent movements of objects in the environment has not been explored. Here we used virtual reality to test whether and how the HBR-derived DPPS is affected by the presence and movement of threatening objects in the environment. In two experiments conducted on 40 healthy volunteers, we observed that threatening arrows flying towards the participant result in DPPS expansion, an effect directionally-tuned towards the source of the arrows. These results indicate that the excitability of brainstem circuitry subserving the HBR is continuously adjusted, taking into account the movement of environmental objects. Such adjustments fit in a framework where the relevance of defensive actions is continually evaluated, to maximise their survival value.


Assuntos
Piscadela , Tronco Encefálico/fisiologia , Espaço Pessoal , Adulto , Estimulação Elétrica , Feminino , Voluntários Saudáveis , Humanos , Masculino , Realidade Virtual , Adulto Jovem
10.
Neuroimage ; 192: 52-65, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30669009

RESUMO

How pain emerges from cortical activities remains an unresolved question in pain neuroscience. A first step toward addressing this question consists in identifying brain activities that occur preferentially in response to painful stimuli in comparison to non-painful stimuli. A key confound that has affected this important comparison in many previous studies is the intensity of the stimuli generating painful and non-painful sensations. Here, we compared the brain activity during iso-intense painful and tactile sensations sampled by functional MRI in 51 healthy participants. Specifically, the perceived intensity was recorded for every stimulus and only the stimuli with rigorously matched perceived intensity were selected and compared between painful and tactile conditions. We found that all brain areas activated by painful stimuli were also activated by tactile stimuli, and vice versa. Neural responses in these areas were correlated with the perceived stimulus intensity, regardless of stimulus modality. More importantly, among these activated areas, we further identified a number of brain regions showing stronger responses to painful stimuli than to tactile stimuli when perceived intensity was carefully matched, including the bilateral opercular cortex, the left supplementary motor area and the right frontal middle and inferior areas. Among these areas, the right frontal middle area still responded more strongly to painful stimuli even when painful stimuli were perceived less intense than tactile stimuli, whereas in this condition other regions showed stronger responses to tactile stimuli. In contrast, the left postcentral gyrus, the visual cortex, the right parietal inferior gyrus, the left parietal superior gyrus and the right cerebellum had stronger responses to tactile stimuli than to painful stimuli when perceived intensity was matched. When tactile stimuli were perceived less intense than painful stimuli, the left postcentral gyrus and the right parietal inferior gyrus still responded more strongly to tactile stimuli while other regions now showed similar responses to painful and tactile stimuli. These results suggest that different brain areas may be engaged differentially when processing painful and tactile information, although their neural activities are not exclusively dedicated to encoding information of only one modality but are strongly determined by perceived stimulus intensity regardless of stimulus modality.


Assuntos
Encéfalo/fisiologia , Percepção da Dor/fisiologia , Percepção do Tato/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Física/métodos , Adulto Jovem
11.
Proc Natl Acad Sci U S A ; 116(5): 1782-1791, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30642968

RESUMO

Individuals exhibit considerable and unpredictable variability in painful percepts in response to the same nociceptive stimulus. Previous work has found neural responses that, while not necessarily responsible for the painful percepts themselves, can still correlate well with intensity of pain perception within a given individual. However, there is no reliable neural response reflecting the variability in pain perception across individuals. Here, we use an electrophysiological approach in humans and rodents to demonstrate that brain oscillations in the gamma band [gamma-band event-related synchronization (γ-ERS)] sampled by central electrodes reliably predict pain sensitivity across individuals. We observed a clear dissociation between the large number of neural measures that reflected subjective pain ratings at within-subject level but not across individuals, and γ-ERS, which reliably distinguished subjective ratings within the same individual but also coded pain sensitivity across different individuals. Importantly, the ability of γ-ERS to track pain sensitivity across individuals was selective because it did not track the between-subject reported intensity of nonpainful but equally salient auditory, visual, and nonnociceptive somatosensory stimuli. These results also demonstrate that graded neural activity related to within-subject variability should be minimized to accurately investigate the relationship between nociceptive-evoked neural activities and pain sensitivity across individuals.


Assuntos
Percepção da Dor/fisiologia , Dor/fisiopatologia , Córtex Somatossensorial/fisiopatologia , Adolescente , Adulto , Animais , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Limiar da Dor/fisiologia , Ratos Sprague-Dawley , Sensação/fisiologia , Adulto Jovem
12.
Neurosci Lett ; 702: 11-14, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-30528879

RESUMO

Defensive motor responses elicited by sudden environmental stimuli are finely modulated by their behavioural relevance to maximise the organism's survival. One such response, the blink reflex evoked by intense electrical stimulation of the median nerve (Hand-Blink Reflex; HBR), has been extensively used to derive fine-grained maps of defensive peripersonal space. However, as other subcortical reflexes, the HBR might also be modulated by lower-level factors that do not bear direct relevance to the defensive value of blinking, thus posing methodological and interpretive problems. Here, we tested whether HBR magnitude is affected by the muscular effort present when holding the hand in certain postures. We found that HBR magnitude increases with muscular effort, an effect most likely mediated by the increased corticospinal drive. However, we found strong evidence that this effect is substantially smaller than the well-known effect of eye-hand proximity on HBR magnitude. Nonetheless, care should be taken in future experiments to avoid erroneous interpretations of the effects of muscular effort as indicators of behaviour relevance.


Assuntos
Piscadela , Mãos/fisiologia , Nervo Mediano/fisiologia , Músculo Esquelético/fisiologia , Reflexo , Adulto , Estimulação Elétrica , Feminino , Mãos/inervação , Humanos , Masculino , Músculo Esquelético/inervação , Postura , Adulto Jovem
13.
Neuroscience ; 386: 240-255, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30018018

RESUMO

A fundamental function of nociception is to trigger defensive motor responses to threatening events. Here, we explored the effects of phasic pain on the motor excitability of ipsilateral and contralateral arms. We reasoned that the occurrence of a short-lasting nociceptive stimulus should result in a specific modulation of motor excitability for muscles involved in the withdrawal of the stimulated limb. This was assessed using transcranial magnetic stimulation (TMS) of the left and right primary motor cortex to elicit motor-evoked potentials (MEPs) in three flexor and two extensor muscles of both arms. To assess the time-course of nociception-motor interactions, TMS pulses were triggered 50-2000 ms after delivering short-lasting nociceptive laser stimuli to the left or right hand. We made three main observations. First, nociceptive stimuli induced an early-latency (100 ms) enhancement of MEPs in flexor muscles of the stimulated hand. Considering its latency, this modulation is likely consequent to nociceptive-motor interactions at spinal level. This early and lateralized enhancement was followed by a later (150-400 ms) MEP reduction in extensor muscles of the stimulated hand and flexor muscles of both hands, predominant at the stimulated hand. Finally, we observed a long-lasting (600-2000 ms) MEP enhancement in muscles of the non-stimulated hand. These later effects of the nociceptive stimulus could reflect nociception-motor interactions occurring at cortical level.


Assuntos
Potencial Evocado Motor/fisiologia , Extremidades/fisiologia , Músculo Esquelético/fisiologia , Nociceptividade/fisiologia , Dor/fisiopatologia , Feminino , Humanos , Masculino , Fatores de Tempo , Estimulação Magnética Transcraniana/métodos , Adulto Jovem
14.
J Neurosci ; 38(24): 5538-5550, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899034

RESUMO

There is now compelling evidence that selective stimulation of Aδ nociceptors eliciting first pain evokes robust responses in the primary somatosensory cortex (S1). In contrast, whether the C-fiber nociceptive input eliciting second pain has an organized projection to S1 remains an open question. Here, we recorded the electrocortical responses elicited by nociceptive-specific laser stimulation of the four limbs in 202 humans (both males and females, using EEG) and 12 freely moving rats (all males, using ECoG). Topographical analysis and source modeling revealed in both species, a clear gross somatotopy of the unmyelinated C-fiber input within the S1 contralateral to the stimulated side. In the human EEG, S1 activity could be isolated as an early-latency negative deflection (C-N1 wave peaking at 710-730 ms) after hand stimulation, but not after foot stimulation because of the spatiotemporal overlap with the subsequent large-amplitude supramodal vertex waves (C-N2/P2). In contrast, because of the across-species difference in the representation of the body surface within S1, S1 activity could be isolated in rat ECoG as a C-N1 after both forepaw and hindpaw stimulation. Finally, we observed a functional dissociation between the generators of the somatosensory-specific lateralized waves (C-N1) and those of the supramodal vertex waves (C-N2/P2), indicating that C-fiber unmyelinated input is processed in functionally distinct somatosensory and multimodal cortical areas. These findings demonstrated that C-fiber input conveys information about the spatial location of noxious stimulation across the body surface, a prerequisite for deploying an appropriate defensive motor repertoire.SIGNIFICANCE STATEMENT Unmyelinated C-fibers are the evolutionarily oldest peripheral afferents responding to noxious environmental stimuli. Whether C-fiber input conveys information about the spatial location of the noxious stimulation to the primary somatosensory cortex (S1) remains an open issue. In this study, C-fibers were activated by radiant heat stimuli delivered to different parts of the body in both humans and rodents while electrical brain activity was recorded. In both species, the C-fiber peripheral input projects to different parts of the contralateral S1, coherently with the representation of the body surface within this brain region. These findings demonstrate that C-fiber input conveys information about the spatial location of noxious stimulation across the body surface, a prerequisite for deploying an appropriate defensive motor repertoire.


Assuntos
Vias Aferentes/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Neurônios Aferentes/fisiologia , Dor/fisiopatologia , Córtex Somatossensorial/fisiopatologia , Adolescente , Adulto , Animais , Mapeamento Encefálico , Potenciais Somatossensoriais Evocados/fisiologia , Feminino , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Adulto Jovem
15.
J Physiol ; 596(16): 3655-3673, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29726629

RESUMO

KEY POINTS: Salient and sudden sensory events generate a remarkably large response in the human brain, the vertex wave (VW). The VW is coupled with a modulation of a voluntarily-applied isometric force. In the present study, we tested whether the VW is also related to executing high-precision movements. The execution of a voluntary high-precision movement remains relatively independent of the brain activity reflected by the preceding VW. The apparent relationship between the positive VW and movement onset time is explained by goal-related but stimulus-independent neural activities. These results highlight the need to consider such goal-related but stimulus-independent neural activities when attempting to relate event-related potential amplitude with perceptual and behavioural performance. ABSTRACT: Salient and fast-rising sensory events generate a large biphasic vertex wave (VW) in the human electroencephalogram (EEG). We recently reported that the VW is coupled with a modulation of concomitantly-applied isometric force. In the present study, in five experiments, we tested whether the VW is also related to high-precision visuomotor control. We obtained three results. First, the saliency-induced increase in VW amplitude was paralleled by a modulation in two of the five extracted movement parameters: a reduction in the onset time of the voluntary movement (P < 0.005) and an increase in movement accuracy (P < 0.005). Second, spontaneous trial-by-trial variability in vertex wave amplitude, for a given level of stimulus saliency, was positively correlated with movement onset time (P < 0.001 in four out of five experiments). Third, this latter trial-by-trial correlation was explained by a widespread EEG negativity independent of the occurrence of the positive VW, although overlapping in time with it. These results indicate that (i) the execution of a voluntary high-precision movement remains relatively independent of the neural processing reflected by the preceding VW, with (ii) the exception of movement onset time, for which saliency-based contextual effects are dissociated from trial-by-trial effects. These results also indicate that (iii) attentional effects can produce spurious correlations between event-related potentials (ERPs) and behavioural measures. Although sudden salient stimuli trigger characteristic EEG responses coupled with distinct reactive components within an ongoing isometric task, the results of the present study indicate that the execution of a subsequent voluntary movement appears largely protected from such saliency-based modulation, with the exception of movement onset time.


Assuntos
Encéfalo/fisiologia , Córtex Cerebral/fisiologia , Potenciais Somatossensoriais Evocados , Atividade Motora , Desempenho Psicomotor , Tempo de Reação , Estimulação Acústica , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Adulto Jovem
16.
Sci Rep ; 8(1): 6584, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700407

RESUMO

Painful burning sensations can be elicited by a spatially-alternating pattern of warm and cold stimuli applied on the skin, the so called "Thermal Grill Illusion" (TGI). Here we investigated whether the TGI percept originates spinally or centrally. Since the inhibition of nociceptive input by concomitant non-nociceptive somatosensory input has a strong spinal component, we reasoned that, if the afferent input underlying the TGI originates at spinal level, then the TGI should be inhibited by a concomitant non-nociceptive somatosensory input. Conversely, if TGI is the result of supraspinal processing, then no effect of touch on TGI would be expected. We elicited TGI sensations in a purely thermal condition without tactile input, and found no evidence that tactile input affected the TGI. These results provide further evidence against a spinal mechanism generating the afferent input producing the TGI, and indicate that the peculiar burning sensation of the TGI results from supraspinal interactions between thermoceptive and nociceptive systems.


Assuntos
Córtex Cerebral/fisiologia , Nociceptividade , Transdução de Sinais , Sensação Térmica , Tato , Adulto , Feminino , Temperatura Alta , Humanos , Ilusões/fisiologia , Masculino , Modelos Biológicos , Percepção da Dor , Adulto Jovem
17.
Sci Rep ; 7(1): 12487, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970521

RESUMO

Perception of space has been guiding effective therapeutic interventions in a number of unilateral chronic pain conditions. However little is known about how trigeminal neuralgia (TN), a condition in which trigeminal stimulation triggers paroxysmal facial pain, affects defensive peripersonal space (DPPS), the portion of space surrounding the body within which defensive responses are enhanced. Given that TN is unilateral, in TN patients the DPPS of the face might not be horizontally symmetric as in pain-free individuals, but instead larger around the affected side. We tested this a priori hypothesis by measuring the proximity-dependent modulation of the hand-blink reflex. Stimuli delivered to the hand ipsilateral to TN elicited a stronger blink, particularly when it was measured from the eye ipsilateral to TN and the hand was closer to the face. Geometric modelling revealed (1) that DPPS was larger on the side of space ipsilateral to TN, and (2) this asymmetry was consequent to an increased estimated potential of sensory events to cause harm when they occur ipsilaterally to TN. These observations demonstrate that neural mechanisms underlying body protection in TN are adjusted to reduce the likelihood that external events evoke the painful paroxysm typical of this condition.


Assuntos
Modelos Neurológicos , Dor/fisiopatologia , Espaço Pessoal , Neuralgia do Trigêmeo/fisiopatologia , Adulto , Idoso , Piscadela/fisiologia , Estimulação Elétrica , Eletromiografia , Face , Feminino , Mãos/inervação , Humanos , Masculino , Pessoa de Meia-Idade , Medição da Dor
19.
eNeuro ; 3(3)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27419217

RESUMO

Feature selection has been extensively studied in the context of goal-directed behavior, where it is heavily driven by top-down factors. A more primitive version of this function is the detection of bottom-up changes in stimulus features in the environment. Indeed, the nervous system is tuned to detect fast-rising, intense stimuli that are likely to reflect threats, such as nociceptive somatosensory stimuli. These stimuli elicit large brain potentials maximal at the scalp vertex. When elicited by nociceptive laser stimuli, these responses are labeled laser-evoked potentials (LEPs). Although it has been shown that changes in stimulus modality and increases in stimulus intensity evoke large LEPs, it has yet to be determined whether stimulus displacements affect the amplitude of the main LEP waves (N1, N2, and P2). Here, in three experiments, we identified a set of rules that the human nervous system obeys to identify changes in the spatial location of a nociceptive stimulus. We showed that the N2 wave is sensitive to: (1) large displacements between consecutive stimuli in egocentric, but not somatotopic coordinates; and (2) displacements that entail a behaviorally relevant change in the stimulus location. These findings indicate that nociceptive-evoked vertex potentials are sensitive to behaviorally relevant changes in the location of a nociceptive stimulus with respect to the body, and that the hand is a particularly behaviorally important site.


Assuntos
Encéfalo/fisiologia , Potenciais Somatossensoriais Evocados , Nociceptividade/fisiologia , Percepção da Dor/fisiologia , Adulto , Análise de Variância , Eletroencefalografia , Feminino , Pé/fisiologia , Mãos/fisiologia , Temperatura Alta , Humanos , Lasers , Masculino , Estimulação Física/métodos , Psicofísica , Processamento de Sinais Assistido por Computador , Adulto Jovem
20.
Cortex ; 81: 168-75, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27236372

RESUMO

The magnitude of the hand-blink reflex (HBR), a subcortical defensive reflex elicited by the electrical stimulation of the median nerve, is increased when the stimulated hand is close to the face ('far-near effect'). This enhancement occurs through a cortico-bulbar facilitation of the polysynaptic medullary pathways subserving the reflex. Here, in two experiments, we investigated the temporal characteristics of this facilitation, and its adjustment during voluntary movement of the stimulated hand. Given that individuals navigate in a fast changing environment, one would expect the cortico-bulbar modulation of this response to adjust rapidly, and as a function of the predicted spatial position of external threats. We observed two main results. First, the HBR modulation occurs without a temporal delay between when the hand has reached the stimulation position and when the stimulus happens (Experiments 1 and 2). Second, the voluntary movement of the hand interacts with the 'far-near effect': stimuli delivered when the hand is far from the face elicit an enhanced HBR if the hand is being moved towards the face, whereas stimuli delivered when the hand is near the face elicit an enhanced HBR regardless of the direction of the hand movement (Experiment 2). These results indicate that the top-down modulation of this subcortical defensive reflex occurs continuously, and takes into account both the current and the predicted position of potential threats with respect to the body. The continuous control of the excitability of subcortical reflex circuits ensures appropriate adjustment of defensive responses in a rapidly-changing sensory environment.


Assuntos
Piscadela/fisiologia , Face/fisiologia , Mãos/fisiologia , Movimento/fisiologia , Valor Preditivo dos Testes , Adulto , Estimulação Elétrica/métodos , Eletromiografia/métodos , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...