Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3551, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670938

RESUMO

X-ray absorption (XA) spectroscopy is an essential experimental tool to investigate the local structure of liquid water. Interpretation of the experiment poses a significant challenge and requires a quantitative theoretical description. High-quality theoretical XA spectra require reliable molecular dynamics simulations and accurate electronic structure calculations. Here, we present the first successful application of coupled cluster theory to model the XA spectrum of liquid water. We overcome the computational limitations on system size by employing a multilevel coupled cluster framework for large molecular systems. Excellent agreement with the experimental spectrum is achieved by including triple excitations in the wave function and using molecular structures from state-of-the-art path-integral molecular dynamics. We demonstrate that an accurate description of the electronic structure within the first solvation shell is sufficient to successfully model the XA spectrum of liquid water within the multilevel framework. Furthermore, we present a rigorous charge transfer analysis of the XA spectrum, which is reliable due to the accuracy and robustness of the electronic structure methodology. This analysis aligns with previous studies regarding the character of the prominent features of the XA spectrum of liquid water.

2.
J Am Chem Soc ; 146(1): 430-436, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38134360

RESUMO

Macrocyclic host molecules bound to electrode surfaces enable the complexation of catalytically active guests for molecular heterogeneous catalysis. We present a surface-anchored host-guest complex with the ability to electrochemically oxidize ammonia in both organic and aqueous solutions. With an adamantyl motif as the binding group on the backbone of the molecular catalyst [Ru(bpy-NMe2)(tpada)(Cl)](PF6) (1) (where bpy-NMe2 is 4,4'-bis(dimethylamino)-2,2'-bipyridyl and tpada is 4'-(adamantan-1-yl)-2,2':6',2″-terpyridine), high binding constants with ß-cyclodextrin were observed in solution (in DMSO-d6:D2O (7:3), K11 = 492 ± 21 M-1). The strong binding affinities were also transferred to a mesoporous ITO (mITO) surface functionalized with a phosphonated derivative of ß-cyclodextrin. The newly designed catalyst (1) was compared to the previously reported naphthyl-substituted catalyst [Ru(bpy-NMe2)(tpnp)(Cl)](PF6) (2) (where tpnp is 4'-(naphthalene-2-yl)-2,2':6',2″-terpyridine) for its stability during catalysis. Despite the insulating nature of the adamantyl substituent serving as the binding group, the stronger binding of this unit to the host-functionalized electrode and the resulting shorter distance between the catalytic active center and the surface led to better performance and higher stability. Both guests are able to oxidize ammonia in both organic and aqueous solutions, and the host-anchored electrode can be refunctionalized multiple times (>3) following the loss of the catalytic activity, without a reduction in performance. Guest 1 exhibits significantly higher stability in comparison to guest 2 toward basic conditions, which often constitutes a challenge for anchored molecular systems. Ammonia oxidation in water led to the selective formation of NO3- with Faradaic efficiencies of up to 100%.

3.
Phys Chem Chem Phys ; 26(2): 1234-1244, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38099819

RESUMO

We explore ultrafast charge transfer (CT) resonantly induced by hard X-ray radiation in organic thiophene-based polymers at the sulfur K-edge. A combination of core-hole clock spectroscopy with real-time propagation time-dependent density functional theory simulations gives an insight into the electron dynamics underlying the CT process. Our method provides control over CT by a selective excitation of a specific resonance in the sulfur atom with monochromatic X-ray radiation. Our combined experimental and theoretical investigation establishes that the dominant mechanism of CT in polymer powders and films consists of electron delocalisation along the polymer chain occurring on the low-femtosecond time scale.

4.
J Phys Chem Lett ; 14(13): 3132-3138, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36952665

RESUMO

Carboxylic acids bind to titanium dioxide (TiO2) dissociatively, forming surface superstructures that give rise to a (2 × 1) pattern detected by low-energy electron diffraction. Exposing this system to water, however, leads to a loss of the highly ordered surface structure. The formate-covered surface was investigated by a combination of diffraction and spectroscopy techniques, together with static and dynamic ab initio simulations, with the conclusion that a dynamic equilibrium exists between adsorbed formic acid and water molecules. This equilibrium process is an important factor for obtaining a better understanding of controlling the self-cleaning properties of TiO2, because the formic acid monolayer is responsible for the amphiphilic character of the surface.

5.
J Chem Phys ; 158(5): 054111, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36754794

RESUMO

Accurate descriptions of intermolecular interactions are of great importance in simulations of molecular liquids. We present an electronic structure method that combines the accuracy of the Harris functional approach with the computational efficiency of approximately linear-scaling density functional theory (DFT). The non-variational nature of the Harris functional has been addressed by constructing a Lagrangian energy functional, which restores the variational condition by imposing stationarity with respect to the reference density. The associated linear response equations may be treated with linear-scaling efficiency in an atomic orbital based scheme. Key ingredients to describe the structural and dynamical properties of molecular systems are the forces acting on the atoms and the stress tensor. These first-order derivatives of the Harris Lagrangian have been derived and implemented in consistence with the energy correction. The proposed method allows for simulations with accuracies close to the Kohn-Sham DFT reference. Embedded in the CP2K program package, the method is designed to enable ab initio molecular dynamics simulations of molecular solutions for system sizes of several thousand atoms. Available subsystem DFT methods may be used to provide the reference density required for the energy correction at near linear-scaling efficiency. As an example of production applications, we applied the method to molecular dynamics simulations of the binary mixtures cyclohexane-methanol and toluene-methanol, performed within the isobaric-isothermal ensemble, to investigate the hydrogen bonding network in these non-ideal mixtures.

6.
J Chem Phys ; 158(1): 014203, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36610974

RESUMO

Theoretical calculations of the low-frequency anharmonic couplings of the ß-phase of crystalline bromoform are presented based on density functional theory quantum chemistry calculations. The electrical and mechanical anharmonicities between intra- and intermolecular modes are calculated, revealing that the electrical anharmonicity dominates the cross-peak intensities in the 2D Raman-THz response and crystalline, as well as liquid, bromoform. Furthermore, the experimentally observed difference in relative cross-peak intensities between the two intramolecular modes of bromoform and the intermolecular modes can be explained by the C3v-symmetry of bromoform in combination with orientational averaging. The good agreement with the experimental results provides further evidence for our interpretation that the 2D Raman-THz response of bromoform is, indeed, related to the anharmonic coupling between the intra- and intermolecular modes.

7.
ACS Nano ; 16(9): 15318-15327, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36069492

RESUMO

In-depth insights into the structure-activity relationships and complex reaction mechanisms of oxygen evolution reaction (OER) electrocatalysts are indispensable to efficiently generate clean hydrogen through water electrolysis. We introduce a convenient and effective sulfur heteroatom tuning strategy to optimize the performance of active Ni and Fe centers embedded into coordination polymer (CP) catalysts. Operando monitoring then provided the mechanistic understanding as to how exactly our facile sulfur engineering of Ni/Fe-CPs optimizes the local electronic structure of their active centers to facilitate dioxygen formation. The high OER activity of our optimized S-R-NiFe-CPs outperforms the most recent NiFe-based OER electrocatalysts. Specifically, we start from oxygen-deprived Od-R-NiFe-CPs and transform them into highly active Ni/Fe-CPs with tailored sulfur coordination environments and anionic deficiencies. Our operando X-ray absorption spectroscopy analyses reveal that sulfur introduction into our designed S-R-NiFe-CPs facilitates the formation of crucial highly oxidized Ni4+ and Fe4+ species, which generate oxygen-bridged NiIV-O-FeIV moieties that act as the true OER active intermediates. The advantage of our sulfur-doping strategy for enhanced OER is evident from comparison with sulfur-free Od-R-NiFe-CPs, where the formation of essential high-valent OER intermediates is hindered. Moreover, we propose a dual-site mechanism pathway, which is backed up with a combination of pH-dependent performance data and DFT calculations. Computational results support the benefits of sulfur modulation, where a lower energy barrier enables O-O bond formation atop the S-NiIV-O-FeIV-O moieties. Our convenient anionic tuning strategy facilitates the formation of active oxygen-bridged metal motifs and can thus promote the design of flexible and low-cost OER electrocatalysts.

8.
Proc Natl Acad Sci U S A ; 119(29): e2118166119, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858341

RESUMO

Electrochemical reduction of CO(2) to value-added chemicals and fuels is a promising strategy to sustain pressing renewable energy demands and to address climate change issues. Direct observation of reaction intermediates during the CO(2) reduction reaction will contribute to mechanistic understandings and thus promote the design of catalysts with the desired activity, selectivity, and stability. Herein, we combined in situ electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy and ab initio molecular dynamics calculations to investigate the CORR process on Cu single-crystal surfaces in various electrolytes. Competing redox pathways and coexistent intermediates of CO adsorption (*COatop and *CObridge), dimerization (protonated dimer *HOCCOH and its dehydrated *CCO), oxidation (*CO2- and *CO32-), and hydrogenation (*CHO), as well as Cu-Oad/Cu-OHad species at Cu-electrolyte interfaces, were simultaneously identified using in situ spectroscopy and further confirmed with isotope-labeling experiments. With AIMD simulations, we report accurate vibrational frequency assignments of these intermediates based on the calculated vibrational density of states and reveal the corresponding species in the electrochemical CO redox landscape on Cu surfaces. Our findings provide direct insights into key intermediates during the CO(2)RR and offer a full-spectroscopic tool (40-4,000 cm-1) for future mechanistic studies.

9.
Phys Chem Chem Phys ; 24(27): 16671-16679, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35766517

RESUMO

The design of low-dimensional organic-inorganic interfaces for the next generation of opto-electronic applications requires in-depth understanding of the microscopic mechanisms ruling electronic interactions in these systems. In this work, we present a first-principles study based on density-functional theory inspecting the structural, energetic, and electronic properties of five molecular donors and acceptors adsorbed on freestanding hexagonal boron nitride (hBN) and molybdenum disulfide (MoS2) monolayers. All considered interfaces are stable, due to the crucial contribution of dispersion interactions, which are maximized by the overall flat arrangement of the physisorbed molecules on both substrates. The level alignment of the hybrid systems depends on the characteristics of the constituents. On hBN, both type-I and type-II interfaces may form, depending on the relative energies of the frontier orbitals with respect to the vacuum level. On the other hand, all MoS2-based hybrid systems exhibit a type-II level alignment, with the molecular frontier orbitals positioned across the energy gap of the semiconductor. The electronic structure of the hybrid materials is further determined by the formation of interfacial dipole moments and by the wave-function hybridization between the organic and inorganic constituents. These results provide important indications for the design of novel low-dimensional hybrid materials with suitable characteristics for opto-electronics.

10.
Proc Natl Acad Sci U S A ; 119(21): e2121641119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35588447

RESUMO

SignificanceFirst-principles calculations, which explicitly account for the electronic structure of matter, can shed light on the molecular structure and dynamics of water in its supercooled state. In this work, we use density functional theory, which relies on a functional to describe electronic exchange and correlations, to evaluate which functional best describes the temperature evolution of bulk water transport coefficients. We also assess the validity of the Stokes-Einstein relation for all the functionals in the temperature range studied, and explore the link between structure and dynamics. Based on these results, we show how transport coefficients can be computed from structural descriptors, which require shorter simulation times to converge, and we point toward strategies to develop better functionals.

11.
Energy Environ Sci ; 15(2): 727-739, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35308298

RESUMO

The rational design of efficient electrocatalysts for industrial water splitting is essential to generate sustainable hydrogen fuel. However, a comprehensive understanding of the complex catalytic mechanisms under harsh reaction conditions remains a major challenge. We apply a self-templated strategy to introduce hierarchically nanostructured "all-surface" Fe-doped cobalt phosphide nanoboxes (Co@CoFe-P NBs) as alternative electrocatalysts for industrial-scale applications. Operando Raman spectroscopy and X-ray absorption spectroscopy (XAS) experiments were carried out to track the dynamics of their structural reconstruction and the real catalytically active intermediates during water splitting. Our operando analyses reveal that partial Fe substitution in cobalt phosphides promotes a structural reconstruction into P-Co-O-Fe-P configurations with low-valence metal centers (M0/M+) during the hydrogen evolution reaction (HER). Results from density functional theory (DFT) demonstrate that these in situ reconstructed configurations significantly enhance the HER performance by lowering the energy barrier for water dissociation and by facilitating the adsorption/desorption of HER intermediates (H*). The competitive activity in the oxygen evolution reaction (OER) arises from the transformation of the reconstructed P-Co-O-Fe-P configurations into oxygen-bridged, high-valence CoIV-O-FeIV moieties as true active intermediates. In sharp contrast, the formation of such CoIII/IV-O-FeIII/IV moieties in Co-FeOOH is hindered under the same conditions, which outlines the key advantages of phosphide-based electrocatalysts. Ex situ studies of the as-synthesized reference cobalt sulfides (Co-S), Fe doped cobalt selenides (Co@CoFe-Se), and Fe doped cobalt tellurides (Co@CoFe-Te) further corroborate the observed structural transformations. These insights are vital to systematically exploit the intrinsic catalytic mechanisms of non-oxide, low-cost, and robust overall water splitting electrocatalysts for future energy conversion and storage.

12.
J Phys Condens Matter ; 34(4)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34633303

RESUMO

In this work we assess and extend strategies for calculating surface tension of complex liquids from molecular dynamics simulations: the mechanical route and the instantaneous liquid interface (ILI) approach. The former employs the connection between stress tensor and surface tension, whereas the latter involves computation of instantaneous density field. Whereas the mechanical route is general, the ILI method involves system-dependent parameters restricting its original application to liquid water only. Here we generalize the approach to complex molecular liquids using atomic van der Waals radii. The performance of the approaches is evaluated on two liquid systems: acetonitrile and water-methanol mixture. In addition, we compare the effect of the computational models for interaction potentials based on semi-empirical electronic structure theory and classical force fields on the estimate of the surface tension within both stress tensor and ILI approaches.

13.
ACS Nano ; 15(9): 15249-15258, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34491721

RESUMO

Osmotic transport in nanoconfined aqueous electrolytes provides alternative venues for water desalination and "blue energy" harvesting. The osmotic response of nanofluidic systems is controlled by the interfacial structure of water and electrolyte solutions in the so-called electrical double layer (EDL), but a molecular-level picture of the EDL is to a large extent still lacking. Particularly, the role of the electronic structure has not been considered in the description of electrolyte/surface interactions. Here, we report enhanced sampling simulations based on ab initio molecular dynamics, aiming at unravelling the free energy of prototypical ions adsorbed at the aqueous graphene and hBN interfaces, and its consequences on nanofluidic osmotic transport. Specifically, we predicted the zeta potential, the diffusio-osmotic mobility, and the diffusio-osmotic conductivity for a wide range of salt concentrations from the ab initio water and ion spatial distributions through an analytical framework based on Stokes equation and a modified Poisson-Boltzmann equation. We observed concentration-dependent scaling laws, together with dramatic differences in osmotic transport between the two interfaces, including diffusio-osmotic flow and current reversal on hBN but not on graphene. We could rationalize the results for the three osmotic responses with a simple model based on characteristic length scales for ion and water adsorption at the surface, which are quite different on graphene and on hBN. Our work provides fundamental insights into the structure and osmotic transport of aqueous electrolytes on 2D materials and explores alternative pathways for efficient water desalination and osmotic energy conversion.

14.
J Phys Chem Lett ; 12(36): 8865-8871, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34498464

RESUMO

The recent development of liquid jet and liquid leaf sample delivery systems allows for accurate measurements of soft X-ray absorption spectra in transmission mode of solutes in a liquid environment. As this type of measurement becomes increasingly accessible, there is a strong need for reliable theoretical methods for assisting in the interpretation of the experimental data. Coupled cluster methods have been extensively developed over the past decade to simulate X-ray absorption in the gas phase. Their performance for solvated species, on the contrary, remains largely unexplored. Here, we investigate the current state of the art of coupled cluster modeling of nitrogen K-edge X-ray absorption of aqueous ammonia and ammonium based on quantum mechanics/molecular mechanics, where both the level of coupled cluster calculations and polarizable embedding are scrutinized. The results are compared to existing experimental data as well as simulations based on transition potential density functional theory.

15.
J Chem Theory Comput ; 17(10): 6423-6431, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34505765

RESUMO

Simulations based on electronic structure theory naturally include polarization and have no transferability problems. In particular, Kohn-Sham density functional theory (KS-DFT) has become the method of reference for ab initio molecular dynamics simulations of condensed matter systems. However, the high computational cost often poses strict limits on the affordable system size as well as on the extension of sampling (number of configurations). In this work, we propose an improvement to the subsystem density functional theory approach, known as the Kim-Gordon (KG) scheme, thus enabling the sampling of configurations for condensed molecular systems keeping the KS-DFT level accuracy at a fraction of computer time. Our scheme compensates the known KG shortcomings of the electronic kinetic energy term by adding a simple correction and can match KS-DFT accuracy in energies and forces. The computationally cheap correction is determined by means of a machine learning procedure. The proposed KG scheme is applied within a linear scaling self-consistent field formalism and is assessed by a series of molecular dynamics simulations of liquid water under different conditions. Although system-dependent, the correction is transferable between system sizes and temperatures.

16.
JACS Au ; 1(5): 569-577, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34467320

RESUMO

Unraveling the atomistic structures of electric double layers (EDL) at electrified interfaces is of paramount importance for understanding the mechanisms of electrocatalytic reactions and rationally designing electrode materials with better performance. Despite numerous efforts dedicated in the past, a molecular level understanding of the EDL is still lacking. Combining the state-of-the-art ab initio molecular dynamics (AIMD) and recently developed computational standard hydrogen electrode (cSHE) method, it is possible to realistically simulate the EDL under well-defined electrochemical conditions. In this work, we report extensive AIMD calculation of the electrified Pt(111)-Had/water interfaces at the saturation coverage of adsorbed hydrogen (Had) corresponding to the typical hydrogen evolution reaction conditions. We calculate the electrode potentials of a series of EDL models with various surface charge densities using the cSHE method and further obtain the Helmholtz capacitance that agrees with experiment. Furthermore, the AIMD simulations allow for detailed structural analyses of the electrified interfaces, such as the distribution of adsorbate Had and the structures of interface water and counterions, which can in turn explain the computed dielectric property of interface water. Our calculation provides valuable molecular insight into the electrified interfaces and a solid basis for understanding a variety of electrochemical processes occurring inside the EDL.

17.
J Phys Chem Lett ; 12(16): 3885-3890, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33856793

RESUMO

The organic component (methylammonium) of CH3NH3PbI3-xClx-based perovskites shows electronic hybridization with the inorganic framework via H-bonding between N and I sites. Femtosecond dynamics induced by core excitation are shown to strongly influence the measured X-ray emission spectra and the resonant inelastic soft X-ray scattering of the organic components. The N K core excitation leads to a greatly increased N-H bond length that modifies and strengthens the interaction with the inorganic framework compared to that in the ground state. The study indicates that excited-state dynamics must be accounted for in spectroscopic studies of this perovskite solar cell material, and the organic-inorganic hybridization interaction suggests new avenues for probing the electronic structure of this class of materials. It is incidentally shown that beam damage to the methylamine component can be avoided by moving the sample under the soft X-ray beam to minimize exposure and that this procedure is necessary to prevent the creation of experimental artifacts.

18.
Nat Chem ; 13(6): 523-529, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33767362

RESUMO

Anchoring molecular catalysts on electrode surfaces combines the high selectivity and activity of molecular systems with the practicality of heterogeneous systems. Molecular catalysts, however, are far less stable than traditional heterogeneous electrocatalysts, and therefore a method to easily replace anchored molecular catalysts that have degraded could make such electrosynthetic systems more attractive. Here we applied a non-covalent 'click' chemistry approach to reversibly bind molecular electrocatalysts to electrode surfaces through host-guest complexation with surface-anchored cyclodextrins. The host-guest interaction is remarkably strong and enables the flow of electrons between the electrode and the guest catalyst. Electrosynthesis in both organic and aqueous media was demonstrated on metal oxide electrodes, with stability on the order of hours. The catalytic surfaces can be recycled by controlled release of the guest from the host cavities and the readsorption of fresh guest.

19.
J Chem Phys ; 154(9): 094702, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33685147

RESUMO

First principles simulations of carbon dioxide adsorbed on the ceria (CeO2) (111) surface are discussed in terms of structural features, stability, charge transfer, and vibrational modes. For this purpose, different density functional theory methods, such as Perdew-Burke-Ernzerhof (PBE) PBE and Hubbard correction, hybrid functionals, and different basis sets have been applied and compared. Both the stoichiometric and the reduced (111) surfaces are considered, where the electronic structure of the latter is obtained by introducing oxygen vacancies on the topmost or the subsurface oxygen layer. Both the potential energy surfaces of the reduced ceria surface and the adsorbate-surface complex are characterized by numerous local minima, of which the relative stability depends strongly on the electronic structure method of choice. Bent CO2 configurations in close vicinity to the surface oxygen vacancy that partially re-oxidize the reduced ceria surface have been identified as the most probable stable minima. However, the oxygen vacancy concentration on the surface turns out to have a direct impact on the relative stability of possible adsorption configurations. Finally, the vibrational analyses of selected adsorbed species on both the stoichiometric and reduced surfaces show promising agreement with previous theoretical and experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...