Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 5(1): 927, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36071206

RESUMO

Cultured meat can provide a sustainable and more ethical alternative to conventional meat. Most of the research in this field has been focused on developing muscle tissue, as it is the main component of meat products, while very few studies address cultured fat tissue, an essential component in the human diet and determinant of meat quality, flavor, juiciness, and tenderness. Here, we engineered bovine fat tissue for cultured meat and incorporated it within engineered bovine muscle tissue. Mesenchymal stem cells (MSCs) were derived from bovine adipose tissue and exhibited the typical phenotypic profile of adipose-derived MSCs. MSC adipogenic differentiation and maturation within alginate-based three-dimensional constructs were optimized to yield a fat-rich edible engineered tissue. Subsequently, a marble-like construct, composed of engineered bovine adipose and muscle tissues, was fabricated, mimicking inter- and intra-muscular fat structures.


Assuntos
Carbonato de Cálcio , Células-Tronco Mesenquimais , Adipogenia , Tecido Adiposo , Animais , Bovinos , Humanos , Carne
2.
Proc Natl Acad Sci U S A ; 119(38): e2207525119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095208

RESUMO

Progress in bottom-up synthetic biology has stimulated the development of synthetic cells (SCs), autonomous protein-manufacturing particles, as dynamic biomimetics for replacing diseased natural cells and addressing medical needs. Here, we report that SCs genetically encoded to produce proangiogenic factors triggered the physiological process of neovascularization in mice. The SCs were constructed of giant lipid vesicles and were optimized to facilitate enhanced protein production. When introduced with the appropriate genetic code, the SCs synthesized a recombinant human basic fibroblast growth factor (bFGF), reaching expression levels of up to 9⋅106 protein copies per SC. In culture, the SCs induced endothelial cell proliferation, migration, tube formation, and angiogenesis-related intracellular signaling, confirming their proangiogenic activity. Integrating the SCs with bioengineered constructs bearing endothelial cells promoted the remodeling of mature vascular networks, supported by a collagen-IV basement membrane-like matrix. In vivo, prolonged local administration of the SCs in mice triggered the infiltration of blood vessels into implanted Matrigel plugs without recorded systemic immunogenicity. These findings emphasize the potential of SCs as therapeutic platforms for activating physiological processes by autonomously producing biological drugs inside the body.


Assuntos
Células Artificiais , Fatores de Crescimento de Fibroblastos , Neovascularização Fisiológica , Animais , Células Artificiais/transplante , Movimento Celular , Proliferação de Células , Colágeno Tipo IV/metabolismo , Células Endoteliais/fisiologia , Fatores de Crescimento de Fibroblastos/biossíntese , Fatores de Crescimento de Fibroblastos/genética , Humanos , Camundongos , Biossíntese de Proteínas
3.
Biomaterials ; 284: 121487, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35421802

RESUMO

Cultivated meat harnesses tissue engineering (TE) concepts to create sustainable, edible muscle tissues, for addressing the rising meat product demands and their global consequences. As 3D-printing is a promising method for creating thick and complex structures, two plant-protein-enriched scaffolding compositions were primarily assessed in our work as 3D-printable platforms for bovine satellite cells (BSC) maturation. Mixtures of pea protein isolate (PPI) and soy protein isolate (SPI) with RGD-modified alginate (Alginate(RGD)) were evaluated as prefabricated mold-based and 3D-printed scaffolds for BSC cultivation, and ultimately, as potential bioinks for cellular printing. Mold-based protein enriched scaffolds exhibited elevated stability and stiffness compared to ones made of Alginate(RGD) alone, while allowing unhindered BSC spreading and maturation. Extrusion based 3D-printing with the two compositions was then developed, while using an edible, removable agar support bath. Successfully fabricated constructs with well-defined geometries supported BSC attachment and differentiation. Finally, cellular bioprinting was demonstrated with PPI-enriched bioinks. Cell recovery post-printing was observed in two cultivation configurations, reaching ∼80-90% viability over time. Moreover, cells could mature within 3D-printed cellular constructs. As animal-derived materials were avoided in our scaffold fabrication process, and pea-protein is known for its low allergic risk, these findings have great promise for further cultivated meat research.


Assuntos
Bioimpressão , Alicerces Teciduais , Alginatos , Animais , Bioimpressão/métodos , Bovinos , Carne , Oligopeptídeos , Proteínas de Plantas , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...