Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 441: 114295, 2023 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-36641083

RESUMO

Major depressive disorder (MDD) is a chronic, recurring, and potentially life-threatening illness, which affects over 300 million people worldwide. MDD affects not only the emotional and social domains but also cognition. However, the currently available treatments targeting cognitive deficits in MDD are limited. Minocycline, an antibiotic with anti-inflammatory properties recently identified as a potential antidepressant, has been shown to attenuate learning and memory deficits in animal models of cognitive impairment. Here, we explored whether minocycline recovers the deficits in cognition in a mouse model of depression. C57BL6/J adult male mice were exposed to two weeks of chronic unpredictable mild stress to induce a depressive-like phenotype. Immediately afterward, mice received either vehicle or minocycline for three weeks in standard housing conditions. We measured anhedonia as a depressive-like response, and place learning to assess cognitive abilities. We also recorded long-term potentiation (LTP) as an index of hippocampal functional plasticity and ran immunohistochemical assays to assess microglial proportion and morphology. After one week of treatment, cognitive performance in the place learning test was significantly improved by minocycline, as treated mice displayed a higher number of correct responses when learning novel spatial configurations. Accordingly, minocycline-treated mice displayed higher LTP compared to controls. However, after three weeks of treatment, no difference between treated and control animals was found for behavior, neural plasticity, and microglial properties, suggesting that minocycline has a fast but short effect on cognition, without lasting effects on microglia. These findings together support the usefulness of minocycline as a potential treatment for cognitive impairment associated with MDD.


Assuntos
Transtornos Cognitivos , Transtorno Depressivo Maior , Camundongos , Animais , Masculino , Minociclina/farmacologia , Transtorno Depressivo Maior/tratamento farmacológico , Antibacterianos/farmacologia , Cognição , Hipocampo
2.
Micron ; 161: 103334, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35970079

RESUMO

Microglia, the immune resident cells of the central nervous system (CNS), are now recognized as performing crucial roles for maintaining homeostasis and determining the outcomes of various pathological challenges across life. While brightfield microscopy is a powerful and established tool to study microglia-mediated mechanisms underlying neurological diseases, microglial density and distribution are some of the most frequently investigated parameters. Their quantitative assessment provides relevant clues regarding dynamic densitometric changes in the microglial population across various CNS regions. Investigators often rely on a manual identification and analysis of these cells within key regions of interest, which can be time-consuming and introduce an experimenter bias. Automation of this process, which has been gaining popularity in recent years, represents a potential solution to minimize both experimenter's bias and time investment, thus increasing the efficacy of the experiment and uniformity of the collected data. We aimed to compare manual versus automatic analysis methods to determine whether an automatic analysis is efficient and accurate enough to replace a manual analysis in both homeostatic and pathological contexts (i.e., adult healthy and lipopolysaccharide-challenged adolescent male mice, respectively). To do so, we used a script that runs on the ImageJ software to perform microglial density analysis by automatic detection of microglial cells from brightfield microscopy images. The main core of the macro script consists in an automatic cell selection step using a threshold followed by a spatial analysis for each selected cell. The resulting data were then compared with the values obtained using a well-established manual method. Overall, the evaluation of the established automatic densitometry method with manual density and distribution analysis revealed similar results for the density and nearest neighbor distance in healthy adult mice, as well as density and distribution in lipopolysaccharide-challenged adolescent mice. Applying machine learning to the automatic process could further improve the accuracy and robustness of the method.


Assuntos
Lipopolissacarídeos , Microglia , Animais , Camundongos , Masculino , Microglia/patologia , Hipocampo , Software , Automação
3.
J Neuroinflammation ; 19(1): 81, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35387656

RESUMO

BACKGROUND: Microglia participate in the immune response upon central nervous system (CNS) infections. However, the role of these cells during herpes simplex encephalitis (HSE) has not been fully characterized. We sought to identify different microglia/microglia-like cells and describe the potential mechanisms and signaling pathways involved during HSE. METHODS: The transcriptional response of CD11b+ immune cells, including microglia/microglia-like cells, was investigated using single-cell RNA sequencing (scRNA-seq) on cells isolated from the ventral posterolateral nucleus (VPL)-enriched thalamic regions of C57BL/6 N mice intranasally infected with herpes simplex virus-1 (HSV-1) (6 × 105 PFUs/20 µl). We further performed scanning electronic microscopy (SEM) analysis in VPL regions on day 6 post-infection (p.i.) to provide insight into microglial functions. RESULTS: We describe a novel microglia-like transcriptional response associated with a rare cell population (7% of all analyzed cells), named "in transition" microglia/microglia-like cells in HSE. This new microglia-like transcriptional signature, found in the highly infected thalamic regions, was enriched in specific genes (Retnlg, Cxcr2, Il1f9) usually associated with neutrophils. Pathway analysis of this cell-type transcriptome showed increased NLRP3-inflammasome-mediated interleukin IL-1ß production, promoting a pro-inflammatory response. These cells' increased expression of viral transcripts suggests that the distinct "in transition" transcriptome corresponds to the intrinsic antiviral immune signaling of HSV-1-infected microglia/microglia-like cells in the thalamus. In accordance with this phenotype, we observed several TMEM119+/IBA-I+ microglia/microglia-like cells immunostained for HSV-1 in highly infected regions. CONCLUSIONS: A new microglia/microglia-like state may potentially shed light on how microglia could react to HSV-1 infection. Our observations suggest that infected microglia/microglia-like cells contribute to an exacerbated CNS inflammation. Further characterization of this transitory state of the microglia/microglia-like cell transcriptome may allow the development of novel immunomodulatory approaches to improve HSE outcomes by regulating the microglial immune response.


Assuntos
Encefalite por Herpes Simples , Herpesvirus Humano 1 , Animais , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Transcriptoma , Núcleos Ventrais do Tálamo
4.
J Neuroinflammation ; 18(1): 178, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34399779

RESUMO

BACKGROUND: Zika virus (ZIKV) has been associated with several neurological complications in adult patients. METHODS: We used a mouse model deficient in TRIF and IPS-1 adaptor proteins, which are involved in type I interferon production, to study the role of microglia during brain infection by ZIKV. Young adult mice were infected intravenously with the contemporary ZIKV strain PRVABC59 (1 × 105 PFUs/100 µL). RESULTS: Infected mice did not present overt clinical signs of the disease nor body weight loss compared with noninfected animals. However, mice exhibited a viremia and a brain viral load that were maximal (1.3 × 105 genome copies/mL and 9.8 × 107 genome copies/g of brain) on days 3 and 7 post-infection (p.i.), respectively. Immunohistochemistry analysis showed that ZIKV antigens were distributed in several regions of the brain, especially the dorsal hippocampus. The number of Iba1+/TMEM119+ microglia remained similar in infected versus noninfected mice, but their cell body and arborization areas significantly increased in the stratum radiatum and stratum lacunosum-moleculare layers of the dorsal hippocampus cornu ammoni (CA)1, indicating a reactive state. Ultrastructural analyses also revealed that microglia displayed increased phagocytic activities and extracellular digestion of degraded elements during infection. Mice pharmacologically depleted in microglia with PLX5622 presented a higher brain viral load compared to untreated group (2.8 × 1010 versus 8.5 × 108 genome copies/g of brain on day 10 p.i.) as well as an increased number of ZIKV antigens labeled with immunogold in the cytoplasm and endoplasmic reticulum of neurons and astrocytes indicating an enhanced viral replication. Furthermore, endosomes of astrocytes contained nanogold particles together with digested materials, suggesting a compensatory phagocytic activity upon microglial depletion. CONCLUSIONS: These results indicate that microglia are involved in the control of ZIKV replication and/or its elimination in the brain. After depletion of microglia, the removal of ZIKV-infected cells by phagocytosis could be partly compensated by astrocytes.


Assuntos
Encéfalo/virologia , Microglia/metabolismo , Neurônios/metabolismo , Fagocitose/fisiologia , Infecção por Zika virus/metabolismo , Animais , Encéfalo/metabolismo , Camundongos , Microglia/virologia , Neurônios/virologia
5.
Brain Behav Immun ; 90: 81-96, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32755645

RESUMO

Parkinson's disease (PD) is the most common neurodegenerative motor disorder. The mechanisms underlying the onset and progression of Levodopa (L-Dopa)-induced dyskinesia (LID) during PD treatment remain elusive. Emerging evidence implicates functional modification of microglia in the development of LID. Thus, understanding the link between microglia and the development of LID may provide the knowledge required to preserve or promote beneficial microglial functions, even during a prolonged L-Dopa treatment. To provide novel insights into microglial functional alterations in PD pathophysiology, we characterized their density, morphology, ultrastructure, and degradation activity in the sensorimotor functional territory of the putamen, using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) cynomolgus monkeys. A subset of MPTP monkeys was treated orally with L-Dopa and developed LID similar to PD patients. Using a combination of light, confocal and transmission electron microscopy, our quantitative analyses revealed alterations of microglial density, morphology and phagolysosomal activity following MPTP intoxication that were partially normalized with L-Dopa treatment. In particular, microglial density, cell body and arborization areas were increased in the MPTP monkeys, whereas L-Dopa-treated MPTP animals presented a microglial phenotype similar to the control animals. At the ultrastructural level, microglia did not differ between groups in their markers of cellular stress or aging. Nevertheless, microglia from the MPTP monkeys displayed reduced numbers of endosomes, compared with control animals, that remained lower after L-Dopa treatment. Microglia from MPTP monkeys treated with L-Dopa also had increased numbers of primary lysosomes compared with non-treated MPTP animals, while secondary and tertiary lysosomes remained unchanged. Moreover, a decrease microglial immunoreactivity for CD68, considered a marker of phagocytosis and lysosomal activity, was measured in the MPTP monkeys treated with L-Dopa, compared with non-treated MPTP animals. Taken together, these findings revealed significant changes in microglia during PD pathophysiology that were partially rescued by L-Dopa treatment. Albeit, this L-Dopa treatment conferred phagolysosomal insufficiency on microglia in the dyskinetic Parkinsonian monkeys.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Animais , Discinesia Induzida por Medicamentos/tratamento farmacológico , Humanos , Levodopa , Macaca fascicularis , Microglia , Doença de Parkinson/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...