Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(6): 3844-3853, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38193701

RESUMO

Developing electrochemical high-energy storage systems is of crucial importance toward a green and sustainable energy supply. A promising candidate is fluoride-ion batteries (FIBs), which can deliver a much higher volumetric energy density than lithium-ion batteries. However, typical metal fluoride cathodes with conversion-type reactions cause a low-rate capability. Recently, layered perovskite oxides and oxyfluorides, such as LaSrMnO4 and Sr3Fe2O5F2, have been reported to exhibit relatively high rate performance and cycle stability compared to typical metal fluoride cathodes with conversion-type reactions, but their discharge capacities (∼118 mA h/g) are lower than those of typical cathodes used in lithium-ion batteries. Here, we show that double-layered perovskite oxyfluoride La1.2Sr1.8Mn2O7-δF2 exhibits (de) intercalation of two fluoride ions to rock-salt slabs and further (de) intercalation of excess fluoride ions to the perovskite layer, leading to a reversible capacity of 200 mA h/g. The additional fluoride-ion intercalation leads to the formation of O-O bond in the structure for charge compensation (i.e., anion redox). These results highlight the layered perovskite oxyfluorides as a new class of active materials for the construction of high-performance FIBs.

2.
ACS Appl Mater Interfaces ; 13(25): 30198-30204, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34152731

RESUMO

Developing high-performance solid electrolytes that are operable at room temperature is one of the toughest challenges related to all-solid-state fluoride-ion batteries (FIBs). In this study, tetragonal ß-Pb0.78Sn1.22F4, a promising solid electrolyte material for mild-temperature applications, was modified through annealing under various atmospheres using thin-film models. The annealed samples exhibited preferential growth and enhanced ionic conductivities. The rate-determining factor for electrode/electrolyte interface reactions in all-solid-state FIBs was also investigated by comparing ß-Pb0.78Sn1.22F4 with representative fluoride-ion- and lithium-ion-conductive materials, namely, LaF3, CeF3, and Li7La3Zr2O12. The overall rate constant of the interfacial reaction, k0, which included both mass and charge transfers, was determined using chronoamperometric measurements and Allen-Hickling simulations. Arrhenius-type correlations between k0 and temperature indicated that activation energies calculated from k0 and ionic conductivities (σion) were highly consistent. The results indicated that the mass transfer (electrolyte-side fluoride-ion conduction) should be the rate-determining process at the electrode/electrolyte interface. ß-Pb0.78Sn1.22F4, with a large σion value, had a larger k0 value than Li7La3Zr2O12. Therefore, it is hoped that the development of high-conductivity solid electrolytes can lead to all-solid-state FIBs with superior rate capabilities similar to those of all-solid-state Li-ion batteries.

3.
Chem Commun (Camb) ; 52(82): 12151-12154, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27549372

RESUMO

A novel indirect charging system that uses a redox mediator was demonstrated for Li-O2 batteries. 4-Methoxy-2,2,6,6-tetramethylpiperidinyl-1-oxyl (MeO-TEMPO) was applied as a mediator to enable the oxidation of Li2O2, even though Li2O2 is electrochemically isolated. This system promotes the oxidation of Li2O2 without parasitic reactions attributed to electrochemical charging and reduces the charging time.

4.
Chem Commun (Camb) ; 49(75): 8389-91, 2013 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23939341

RESUMO

Precise knowledge of the discharge and charge reactions within Li-O2 batteries is an important aspect of developing highly efficient, rechargeable Li-O2 cells. We describe an analytical method capable of determining the quantity of Li2O2 in the cathode on the basis of the reaction of Li2O2 with an oxoammonium salt.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...