Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; : 173288, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768725

RESUMO

The spread of antimicrobial resistance (AMR) in agricultural systems via irrigation water is a serious public health issue as it can be transmitted to humans through the food chain. Therefore, understanding the dissemination routes of antibiotic resistance genes (ARGs) in agricultural systems is crucial for the assessment of health risks associated with eating fresh vegetables such as spinach and radish irrigated with treated municipal wastewater (TMW). In this study, we investigated the bacterial community structure and resistome in the soil-plant-earthworm continuum after irrigation of spinach and radish with TMW containing the antibiotics trimethoprim (TMP), sulfamethoxazole (SMZ), and sulfapyridine (SPD) using 16S rRNA gene sequencing and high throughput quantitative PCR (HT-qPCR). The study was conducted in two phases: Phase I involved eight weeks of spinach and radish production using TMW for irrigation, whereas Phase II entailed three weeks of earthworm exposure to contaminated plant material obtained in Phase I. The 16S data indicated that the rhizosphere bacterial community composition and structure were more resilient to antibiotic residuals in the irrigated water, with radish showing less susceptibility than spinach than those of bulk soils. The HT-qPCR analysis revealed that a total of 271 ARGs (out of 285) and 9 mobile genetic elements (MGEs) (out of 10) were detected in all samples. Higher diversity and abundance of ARGs were observed for samples irrigated with higher concentrations of antibiotics in both spinach and radish treatments. However, compared to spinach, radish ARG dynamics in the soil biome were more stable due to the change of antibiotic introduction to the soil. At the class level, multi-drug resistance (MDR) class was altered significantly by the presence of antibiotics in irrigation water. Compared to earthworm fecal samples, their corresponding soil environments showed a higher number of detected ARGs, suggesting that earthworms could play a role in reducing ARG dissemination in the soil environments. These findings will not only provide insight into the dissemination of ARGs in agricultural environments due to antibiotic residuals in irrigated water but could help understand the potential human health risks associated with ARGs.

2.
Sci Total Environ ; 927: 172190, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575025

RESUMO

Identification of methods for the standardized assessment of bacterial pathogens and antimicrobial resistance (AMR) in environmental water can improve the quality of monitoring and data collected, support global surveillance efforts, and enhance the understanding of environmental water sources. We conducted a systematic review to assemble and synthesize available literature that identified methods for assessment of prevalence and abundance of bacterial fecal indicators and pathogens in water for the purposes of monitoring bacterial pathogens and AMR. After screening for quality, 175 unique publications were identified from 15 databases, and data were extracted for analysis. This review identifies the most common and robust methods, and media used to isolate target organisms from surface water sources, summarizes methodological trends, and recognizes knowledge gaps. The information presented in this review will be useful when establishing standardized methods for monitoring bacterial pathogens and AMR in water in the United States and globally.


Assuntos
Enterococcus , Monitoramento Ambiental , Escherichia coli , Salmonella , Microbiologia da Água , Enterococcus/isolamento & purificação , Salmonella/isolamento & purificação , Monitoramento Ambiental/métodos , Escherichia coli/isolamento & purificação
3.
Environ Int ; 183: 108374, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101104

RESUMO

Treated municipal wastewater (TMW) can provide a reliable source of irrigation water for crops, which is especially important in arid areas where water resources are limited or prone to drought. Nonetheless, TMW may contain residual antibiotics, potentially exposing the crops to these substances. The goal of this study was to investigate the dissemination of antibiotics resistance genes (ARGs) in the soil-plant-earthworm continuum after irrigation of spinach and radish plants with TMW containing trimethoprim, sulfamethoxazole, and sulfapyridine in a greenhouse experiment, followed by feeding of earthworms with harvested plant materials. Our results showed that antibiotic resistance genes (ARGs) were enriched in the soil-plant-earthworm microbiomes irrigated with TMW and TMW spiked with higher concentrations of antibiotics. The number of ARGs and antibiotic-resistant bacteria (ARB) enrichment varied with plant type, with spinach harboring a significantly higher amount of ARGs and ARB compared to radish. Our data showed that bulk and rhizosphere soils of spinach and radish plants irrigated with MilliQ water, TMW, TMW10, or TMW100 had significant differences in bacterial community (p < 0.001), ARG (p < 0.001), and virulence factor gene (VFG) (p < 0.001) diversities. The abundance of ARGs significantly decreased from bulk soil to rhizosphere to phyllosphere and endosphere. Using metagenome assembled genomes (MAGs), we recovered many bacterial MAGs and a near complete genome (>90 %) of bacterial MAG of genus Leclercia adecarboxylata B from the fecal microbiome of earthworm that was fed harvested radish tubers and spinach leaves grown on TMW10 irrigated waters, and this bacterium has been shown to be an emerging pathogen causing infection in immunocompromised patients that may lead to health complications and death. Therefore, crops irrigated with TMW containing residual antibiotics and ARGs may lead to increased incidences of enrichment of ARB in the soil-plant-earthworm continuum.


Assuntos
Oligoquetos , Solo , Animais , Humanos , Genes Bacterianos , Antagonistas de Receptores de Angiotensina , Antibacterianos/farmacologia , Inibidores da Enzima Conversora de Angiotensina , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Águas Residuárias , Água , Microbiologia do Solo
4.
Sci Total Environ ; 905: 167189, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37748604

RESUMO

Developing effective and sensitive detection methods for antimicrobial resistant Salmonella enterica from surface water is a goal of the National Antimicrobial Resistance Monitoring System (NARMS). There are no specified methods for recovery of S. enterica in surface waters in the U.S. A multi-laboratory evaluation of four methods - bulk water enrichment (BW), vertical Modified Moore Swab (VMMS), modified Standard Method 9260.B2 (SM), and dead-end ultrafiltration (DEUF) - was undertaken to recover S. enterica from surface water. In Phase 1, one-liter volumes of water were collected from the same site on five different dates. Water was shipped and analyzed at four different laboratory locations (A, B, C, and D) for recovery of 1) inoculated fluorescent S. Typhimurium strain (ca. 30 CFU/L) and 2) Salmonella present in the water sampled. At each location, BW, VMMS, or SM recovery was performed on five separate 1 L water samples. Twenty 1 L water samples were subjected to each recovery method, and overall, sixty 1 L samples were assayed for Salmonella. Inoculated, fluorescent Salmonella Typhimurium and environmental Salmonella spp. were recovered from 65 % (39/60) and 45 % (27/60) of water samples, respectively. BW, VMMS, and SM recovered fluorescent S. Typhimurium from 60 %, 60 %, and 75 % of inoculated samples, respectively. Analysis by Chi-squared test determined laboratory location had a significant (p < 0.05) effect on fluorescent S. Typhimurium recovery compared to method or date of water collection. In Phase 2, recovery of inoculated fluorescent S. Typhimurium from 1 L samples by SM and DEUF was compared at laboratory locations B and D. SM and DEUF recovered fluorescent S. Typhimurium from 100 % (20/20) and 95 % (19/20) of inoculated water samples, respectively; laboratory location (p > 0.05) did not affect Salmonella recovery. Uniform laboratory methodology and training should be prioritized in conducting Salmonella recovery from surface water in laboratories.


Assuntos
Salmonella enterica , Antibacterianos/farmacologia , Laboratórios , Farmacorresistência Bacteriana , Salmonella typhimurium , Água
5.
Sci Total Environ ; 872: 162194, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36781130

RESUMO

Livestock manure, dairy lagoon effluent, and treated wastewater are known reservoirs of antibiotic resistance genes (ARGs), antibiotic-resistant bacteria (ARB), and virulence factor genes (VFGs), and their application to agricultural farmland could be a serious public health threat. However, their dissemination to agricultural lands and impact on important geochemical pathways such as the nitrogen (N) cycle have not been jointly explored. In this study, shotgun metagenomic sequencing and analyses were performed to examine the diversity and composition of microbial communities, ARGs, VFGs, and N cycling genes in different livestock manure/lagoon and treated wastewater collected from concentrated animal feeding operations (CAFOs) and a municipal wastewater treatment plant along the west coast of the United States. Multivariate analysis showed that diversity indices of bacterial taxa from the different microbiomes were not significantly different based on InvSimpson (P = 0.05), but differences in ARG mechanisms were observed between swine manure and other microbiome sources. Comparative resistome profiling showed that ARGs in microbiome samples belonged to four core resistance classes: aminoglycosides (40-55 %), tetracyclines (30-45 %), beta-lactam-resistance (20-35 %), macrolides (18-30 %), and >50 % of the VFGs that the 24 microbiomes harbored were phyletically affiliated with two bacteria, Bacteroidetes fragilis and Enterobacter aerogenes. Network analysis based on Spearman correlation showed co-occurrence patterns between several genes such as transporter-gene and regulator, efflux pump and involved-in-polymyxin- resistance, aminoglycoside, beta-lactam, and macrolide with VFGs and bacterial taxa such as Firmicutes, Candidatus Themoplasmatota, Actinobacteria, and Bacteroidetes. Metabolic reconstruction of metagenome-assembled genome (MAGs) analysis showed that the most prevalent drug resistance mechanisms were associated with carbapenem resistance, multidrug resistance (MDR), and efflux pump. Bacteroidales was the main taxa involved in dissimilatory nitrate reduction (DNRA) in dairy lagoon effluent. This study demonstrates that the dissemination of waste from these sources can increase the spread of ARGs, ARB, and VFGs into agricultural lands, negatively impacting both soil and human health.


Assuntos
Genes Bacterianos , Águas Residuárias , Humanos , Animais , Suínos , Antibacterianos/farmacologia , Gado , Farmacorresistência Bacteriana/genética , Esterco/análise , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Bactérias , Microbiologia do Solo , beta-Lactamas/análise
6.
Sci Total Environ ; 858(Pt 3): 159841, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36397604

RESUMO

Under the ongoing climate change scenario, treated municipal wastewater (TMW) is a potential candidate for irrigated agriculture but may result in the exposure of agricultural environments to antibiotics. We studied the transfers of trimethoprim, sulfamethoxazole, and sulfapyridine in the TMW-soil-plant-earthworm continuum under greenhouse/laboratory conditions. Irrigation of potted spinach and radish with as-collected TMW resulted in no transfers of antibiotics into soil or plants owing to their low concentrations in the tertiary-treated TMW. However, TMW spiked with higher antibiotic concentrations led to transfers through this continuum. High initial inputs, slow soil degradation, and chemical speciation of the antibiotics, coupled with an extensive plant-root distribution, were important factors enhancing the plant uptake of antibiotics. In microcosm studies, transfers from vegetable materials into earthworms were low but showed potential for bioaccumulation. Such food chain transfers of antibiotics may be a driver for antibiotic resistance in agricultural systems, which is an area worthy of future study. These issues can perhaps be mitigated through high levels of TMW purification to effectively remove antibiotic compounds.


Assuntos
Oligoquetos , Animais , Solo , Águas Residuárias , Antibacterianos
7.
PLoS One ; 16(6): e0252242, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34061881

RESUMO

The phyllosphere is the aerial part of plants that is exposed to different environmental conditions and is also known to harbor a wide variety of bacteria including both plant and human pathogens. However, studies on phyllosphere bacterial communities have focused on bacterial composition at different stages of plant growth without correlating their functional capabilities to bacterial communities. In this study, we examined the seasonal effects and temporal variabilities driving bacterial community composition and function in spinach phyllosphere due to increasing salinity and season and estimated the functional capacity of bacterial community16S V4 rRNA gene profiles by indirectly inferring the abundance of functional genes based on metagenomics inference tool Piphillin. The experimental design involved three sets of spinach (Spinacia oleracea L., cv. Racoon) grown with saline water during different seasons. Total bacteria DNA from leaf surfaces were sequenced using MiSeq® Illumina platform. About 66.35% of bacteria detected in the phyllosphere were dominated by four phyla- Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. Permutational analysis of variance (PERMANOVA) showed that phyllosphere microbiomes were significantly (P < 0.003) affected by season, but not salinity (P = 0.501). The most abundant inferred functional pathways in leaf samples were the amino acids biosynthesis, ABC transporters, ribosome, aminoacyl-tRNA biosynthesis, two-component system, carbon metabolism, purine metabolism, and pyrimidine metabolism. The photosynthesis antenna proteins pathway was significantly enriched in June leaf samples, when compared to March and May. Several genes related to toxin co-regulated pilus biosynthesis proteins were also significantly enriched in June leaf samples, when compared to March and May leaf samples. Therefore, planting and harvesting times must be considered during leafy green production due to the influence of seasons in growth and proliferation of phyllosphere microbial communities.


Assuntos
Salinidade , Estações do Ano , Spinacia oleracea/metabolismo , Spinacia oleracea/microbiologia
8.
J Hazard Mater ; 382: 120991, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31446353

RESUMO

There are limited numbers of Escherichia coli isolate panels that represent United States food animal production. The majority of existing Escherichia coli isolate panels are typically designed: (i) to optimize genetic and/or phenotypic diversity; or (ii) focus on human isolates. To address this shortfall in agriculturally-related resources, we have assembled a publicly-available isolate panel (AgEc) from the four major animal production commodities in the United States, including beef, dairy, poultry, and swine, as well as isolates from agriculturally-impacted environments, and other commodity groups. Diversity analyses by phylotyping and Pulsed-field Gel Electrophoresis revealed a highly diverse composition, with the 300 isolates clustered into 71 PFGE sub-types based upon an 80% similarity cutoff. To demonstrate the panel's utility, tetracycline and sulfonamide resistance genes were assayed, which identified 131 isolates harboring genes involved in tetracycline resistance, and 41 isolates containing sulfonamide resistance genes. There was strong overlap in the two pools of isolates, 38 of the 41 isolates harboring sulfonamide resistance genes also contained tetracycline resistance genes. Analysis of antimicrobial resistance gene patterns revealed significant differences along commodity and geographical lines. This panel therefore provides the research community an E. coli isolate panel for study of issues pertinent to U.S. food animal production.


Assuntos
Agricultura , Farmacorresistência Bacteriana/genética , Escherichia coli/isolamento & purificação , Animais , Antibacterianos/farmacologia , Bovinos , Galinhas , Monitoramento Ambiental , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Genes Bacterianos , Esterco/microbiologia , Filogenia , Sulfonamidas/farmacologia , Suínos , Tetraciclina/farmacologia , Estados Unidos
9.
Mol Plant Microbe Interact ; 33(2): 296-307, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31851880

RESUMO

Dickeya dadantii is a plant-pathogenic bacterium that causes soft-rot in a wide range of plants. Although we have previously demonstrated that cyclic bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), a bacterial secondary messenger, plays a central role in virulence regulation in D. dadantii, the upstream signals that modulate c-di-GMP remain enigmatic. Using a genome-wide transposon mutagenesis approach of a Δhfq mutant strain that has high c-di-GMP and reduced motility, we uncovered transposon mutants that recovered the c-di-GMP-mediated repression on swimming motility. A number of these mutants harbored transposon insertions in genes encoding tricarboxylic acid (TCA) cycle enzymes. Two of these TCA transposon mutants were studied further by generating chromosomal deletions of the fumA gene (encoding fumarase) and the sdhCDAB operon (encoding succinate dehydrogenase). Disruption of the TCA cycle in these deletion mutants resulted in reduced intracellular c-di-GMP and enhanced production of pectate lyases (Pels), a major plant cell wall-degrading enzyme (PCWDE) known to be transcriptionally repressed by c-di-GMP. Consistent with this result, addition of TCA cycle intermediates such as citrate also resulted in increased c-di-GMP levels and decreased production of Pels. Additionally, we found that a diguanylate cyclase GcpA was solely responsible for the observed citrate-mediated modulation of c-di-GMP. Finally, we demonstrated that addition of citrate induced not only an overproduction of GcpA protein but also a concomitant repression of the c-di-GMP-degrading phosphodiesterase EGcpB which, together, resulted in an increase in the intracellular concentration of c-di-GMP. In summary, our report demonstrates that bacterial respiration and respiration metabolites serve as signals for the regulation of c-di-GMP signaling.


Assuntos
Proteínas de Bactérias , GMP Cíclico/análogos & derivados , Gammaproteobacteria , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/microbiologia , GMP Cíclico/genética , GMP Cíclico/metabolismo , Dickeya , Gammaproteobacteria/enzimologia , Gammaproteobacteria/genética , Regulação Bacteriana da Expressão Gênica/genética , Mutação
10.
Environ Microbiol ; 21(8): 2755-2771, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30895662

RESUMO

Dickeya dadantii is a plant pathogen that causes soft rot disease on vegetable and potato crops. To successfully cause infection, this pathogen needs to coordinately modulate the expression of genes encoding several virulence determinants, including plant cell wall degrading enzymes (PCWDEs), type III secretion system (T3SS) and flagellar motility. Here, we uncover a novel feed-forward signalling circuit for controlling virulence. Global RNA chaperone Hfq interacts with an Hfq-dependent sRNA ArcZ and represses the translation of pecT, encoding a LysR-type transcriptional regulator. We demonstrate that the ability of ArcZ to be processed to a 50 nt 3'- end fragment is essential for its regulation of pecT. PecT down-regulates PCWDE and the T3SS by repressing the expression of a global post-transcriptional regulator- (RsmA-) associated sRNA encoding gene rsmB. In addition, we show that the protein levels of two cyclic di-GMP (c-di-GMP) diguanylate cyclases (DGCs), GcpA and GcpL, are repressed by Hfq. Further studies show that both DGCs are essential for the Hfq-mediated post-transcriptional regulation on RsmB. Overall, our report provides new insights into the interplays between ubiquitous signalling transduction systems that were most studied independently and sheds light on multitiered regulatory mechanisms for a precise disease regulation in bacteria.


Assuntos
GMP Cíclico/análogos & derivados , Enterobacteriaceae/patogenicidade , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Transdução de Sinais , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , GMP Cíclico/metabolismo , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Regulação Bacteriana da Expressão Gênica , Doenças das Plantas/microbiologia , Proteínas de Ligação a RNA/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Virulência/genética , Fatores de Virulência/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-29966254

RESUMO

The microbiological quality of treated waste water is always a concern when waste water is disposed to the environment. However, when treated appropriately, such water can serve many purposes to the general population. Therefore, the treatment and removal of contaminants from swine waste water by continuous flow-constructed wetlands involves complex biological, physical, and chemical processes that may produce better quality water with reduced levels of contaminants. Swine waste contains E. coli populations and other bacterial contaminants originating from swine houses through constructed wetlands, but little is known about E. coli population in swine waste water. To assess the impacts of seasonal variations and the effect of the wetland layout/operations on water quality, E. coli isolates were compared for genetic diversity using repetitive extragenic palindromic polymerase chain reaction (REP-PCR). None of the isolates was confirmed as Shiga toxin producing E. coli O157:H7 (STEC); however, other pathotypes, such as enterotoxigenic E. coli (ETEC) were identified. Using a 90% similarity index from REP-PCR, 69 genotypes out of 421 E. coli isolates were found. Our data showed that the E. coli population was significantly (p = 0.036) higher in November than in March and August in most of the wetland cells. Furthermore, there was a significant (p = 0.001) reduction in E. coli populations from wetland influent to the final effluent. Therefore, the use of continuous flow-constructed wetlands may be a good treatment approach for reducing contaminants from different waste water sources.


Assuntos
Escherichia coli/isolamento & purificação , Suínos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Áreas Alagadas , Animais , Variação Genética , Genótipo , Reação em Cadeia da Polimerase , Microbiologia da Água
12.
Artigo em Inglês | MEDLINE | ID: mdl-25250242

RESUMO

Shiga toxin-producing E. coli O157:H7 and non-O157 have been implicated in many foodborne illnesses caused by the consumption of contaminated fresh produce. However, data on their persistence in soils are limited due to the complexity in datasets generated from different environmental variables and bacterial taxa. There is a continuing need to distinguish the various environmental variables and different bacterial groups to understand the relationships among these factors and the pathogen survival. Using an approach called Topological Data Analysis (TDA); we reconstructed the relationship structure of E. coli O157 and non-O157 survival in 32 soils (16 organic and 16 conventionally managed soils) from California (CA) and Arizona (AZ) with a multi-resolution output. In our study, we took a community approach based on total soil microbiome to study community level survival and examining the network of the community as a whole and the relationship between its topology and biological processes. TDA produces a geometric representation of complex data sets. Network analysis showed that Shiga toxin negative strain E. coli O157:H7 4554 survived significantly longer in comparison to E. coli O157:H7 EDL 933, while the survival time of E. coli O157:NM was comparable to that of E. coli O157:H7 EDL 933 in all of the tested soils. Two non-O157 strains, E. coli O26:H11 and E. coli O103:H2 survived much longer than E. coli O91:H21 and the three strains of E. coli O157. We show that there are complex interactions between E. coli strain survival, microbial community structures, and soil parameters.


Assuntos
Escherichia coli O157 , Escherichia coli , Viabilidade Microbiana , Microbiologia do Solo , Arizona , Carga Bacteriana , California , DNA Bacteriano , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli O157/classificação , Escherichia coli O157/genética , Microbiologia de Alimentos , Análise de Sequência de DNA
13.
FEMS Microbiol Ecol ; 84(3): 542-54, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23360569

RESUMO

Shiga toxin-producing Escherichia coli O157:H7 has been implicated in many foodborne illnesses. In this study, survival of E. coli O157:H7 in 32 soils from California (CA) and Arizona (AZ) was investigated. Our goal was to correlate the survival time of E. coli O157:H7 in soils with 16S rRNA pyrosequencing based bacterial community composition. Kohonen self-organizing map of survival and associated soil chemical, physical and biological variables using artificial neural network analysis showed that survival of E. coli O157:H7 in soils was negatively correlated with salinity (EC), but positively correlated with total nitrogen (TN) and water soluble organic carbon (WSOC). Bacterial diversity as determined by the Shannon diversity index had no significant (P = 0.635) effect on ttd, but individual bacterial phyla had different effects. The survival of E. coli O157:H7 was positively correlated with the abundances of Actinobacteria (P < 0.001) and Acidobacteria (P < 0.05), and negatively correlated with those of Proteobacteria and Bacteroidetes (P < 0.05). Our data showed that specific groups of bacteria correlate with the persistence of E. coli O157:H7 in soils thus opening new ways to study the influence of certain bacterial phyla on persistence of this pathogen and other related pathogens in complex environments.


Assuntos
Fenômenos Fisiológicos Bacterianos , Escherichia coli O157/fisiologia , Interações Microbianas , Microbiologia do Solo , Arizona , Bactérias/classificação , Bactérias/genética , Biodiversidade , California , DNA Bacteriano/análise , Escherichia coli O157/genética , Viabilidade Microbiana , Redes Neurais de Computação , Salinidade , Análise de Sequência de DNA , Solo/química
14.
PLoS One ; 7(7): e40338, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22844402

RESUMO

Land-use change and management practices are normally enacted to manipulate environments to improve conditions that relate to production, remediation, and accommodation. However, their effect on the soil microbial community and their subsequent influence on soil function is still difficult to quantify. Recent applications of molecular techniques to soil biology, especially the use of 16S rRNA, are helping to bridge this gap. In this study, the influence of three land-use systems within a demonstration farm were evaluated with a view to further understand how these practices may impact observed soil bacterial communities. Replicate soil samples collected from the three land-use systems (grazed pine forest, cultivated crop, and grazed pasture) on a single soil type. High throughput 16S rRNA gene pyrosequencing was used to generate sequence datasets. The different land use systems showed distinction in the structure of their bacterial communities with respect to the differences detected in cluster analysis as well as diversity indices. Specific taxa, particularly Actinobacteria, Acidobacteria, and classes of Proteobacteria, showed significant shifts across the land-use strata. Families belonging to these taxa broke with notions of copio- and oligotrphy at the class level, as many of the less abundant groups of families of Actinobacteria showed a propensity for soil environments with reduced carbon/nutrient availability. Orders Actinomycetales and Solirubrobacterales showed their highest abundance in the heavily disturbed cultivated system despite the lowest soil organic carbon (SOC) values across the site. Selected soil properties ([SOC], total nitrogen [TN], soil texture, phosphodiesterase [PD], alkaline phosphatase [APA], acid phosphatase [ACP] activity, and pH) also differed significantly across land-use regimes, with SOM, PD, and pH showing variation consistent with shifts in community structure and composition. These results suggest that use of pyrosequencing along with traditional analysis of soil physiochemical properties may provide insight into the ecology of descending taxonomic groups in bacterial communities.


Assuntos
Agricultura , Bactérias/classificação , Biodiversidade , Ecossistema , Microbiologia do Solo , Bactérias/genética , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/isolamento & purificação , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...