Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35161248

RESUMO

The technology of hybrid rice utilizing heterosis is an essential requirement for achieving food security. The current study was aimed at assessing the genetic parameters and the gene actions of 15 yield-component traits associated with heterosis, in 9 new parental lines of hybrid rice and their generated hybrids. Five cytoplasmic male sterile (CMS) lines were crossed with four restorer (R) lines using twenty generated line × tester designation hybrid combinations. The results revealed that all the traits were controlled by additive and non-additive gene actions. However, the additive variance was the main component of the total genotypic variance. Assessment of the general combining ability (GCA) detected the best combiners among the genotypes. The hybrid combinations that expressed the highest-positive specific combining ability (SCA) for grain-yield were detected. The correlation between the GCA and SCA was evaluated. The hybrid crosses with high-positive heterosis, due to having a better parent for grain yield, were detected. The principal component analysis (PCA) recorded the first four principal axis displayed Eigenvalues >1 and existing variation cumulative of 83.92% in the genotypes for yield component characteristics. Three-dimensional plots corresponding to the studied traits illustrated that the genotypes Guang8A × Giza181, Quan-9311A × Giza179, II-32A × Giza181, and II-32A × Giza179 are classified as possessing superior grain yield.

2.
ACS Omega ; 6(13): 9020-9027, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33842772

RESUMO

Vitamin E plays an exemplary role in living organisms. α-Tocopherol is the most superior and active form of naturally occurring vitamin E that meets the requirements of human beings as it possesses the α-tocopherol transfer protein (α-TTP). α-Tocopherol deficiency can lead to severe anemia, certain cancers, several neurodegenerative and cardiovascular diseases, and most importantly male infertility. As a result of the depletion of its natural sources, researchers have tried to employ metabolic engineering to enhance α-tocopherol production to meet the human consumption demand. However, the metabolic engineering approach relies on the metabolic flux of a metabolite in its biosynthetic pathway. Analysis of the metabolic flux of a metabolite needs a method that can monitor the α-tocopherol level in living cells. This study was undertaken to construct a FRET (fluorescence resonance energy transfer)-based nanosensor for monitoring the α-tocopherol flux in prokaryotic and eukaryotic living cells. The human α-TTP was sandwiched between a pair of FRET fluorophores to construct the nanosensor, which was denoted as FLIP-α (the fluorescence indicator for α-tocopherol). FLIP-α showed excellence in monitoring the α-tocopherol flux with high specificity. The sensor was examined for its pH stability for physiological applications, where it shows no pH hindrance to its activity. The calculated affinity of this nanosensor was 100 µM. It monitored the real-time flux of α-tocopherol in bacterial and yeast cells, proving its biocompatibility in monitoring the α-tocopherol dynamics in living cells. Being noninvasive, FLIP-α provides high temporal and spatial resolutions, which holds an indispensable significance in bioimaging metabolic pathways that are highly compartmentalized.

3.
Saudi J Biol Sci ; 28(2): 1502, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33613078

RESUMO

[This corrects the article DOI: 10.1016/j.sjbs.2019.10.004.].

4.
Mol Biol Rep ; 48(1): 731-742, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33389532

RESUMO

Rusts are a group of major diseases that have an adverse effect on crop production. Those targeting wheat are found in three principal forms: leaf, stripe, and stem rust. Leaf rust causes foliar disease in wheat; in Egypt, this causes a significant annual yield loss. The deployment of resistant genotypes has proved to be a relatively economical and environmentally sustainable method of controlling the disease. Gene pyramiding can be performed using traditional breeding techniques. Additionally, pathotypes can be introduced to examine specific leaf rust genes, or the breeder may conduct more complex breeding methods. Indirect selection via DNA markers linked to resistance genes may facilitate the transfer of targeted genes, either individually or in combination, even in a disease-free environment. The use of selective crosses to counter virulent races of leaf, stripe, and stem rust has resulted in the transfer of several resistance genes into new wheat germplasm from cultivated or wild species. Quantitative trait locus (QTL) technology has been adopted in a wide variety of novel approaches and is becoming increasingly recognized in wheat breeding. Moreover, several researchers have reported the transference of leaf and stripe rust resistance genes into susceptible wheat cultivars.


Assuntos
Basidiomycota/patogenicidade , Resistência à Doença/genética , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Folhas de Planta/genética , Triticum/genética , Basidiomycota/imunologia , Mapeamento Cromossômico , Cromossomos de Plantas/química , Cromossomos de Plantas/metabolismo , Ligação Genética , Marcadores Genéticos , Genótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/classificação , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Locos de Características Quantitativas , Triticum/classificação , Triticum/imunologia , Triticum/microbiologia
5.
Biology (Basel) ; 11(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35053052

RESUMO

Small ubiquitin-related modifier (SUMO) regulates the cellular function of diverse proteins through post-translational modifications. The current study defined a new homolog of SUMO genes in the rice genome and named it OsSUMO7. Putative protein analysis of OsSUMO7 detected SUMOylation features, including di-glycine (GG) and consensus motifs (ΨKXE/D) for the SUMOylation site. Phylogenetic analysis demonstrated the high homology of OsSUMO7 with identified rice SUMO genes, which indicates that the OsSUMO7 gene is an evolutionarily conserved SUMO member. RT-PCR analysis revealed that OsSUMO7 was constitutively expressed in all plant organs. Bioinformatic analysis defined the physicochemical properties and structural model prediction of OsSUMO7 proteins. A red fluorescent protein (DsRed), fused with the OsSUMO7 protein, was expressed and localized mainly in the nucleus and formed nuclear subdomain structures. The fusion proteins of SUMO-conjugating enzymes with the OsSUMO7 protein were co-expressed and co-localized in the nucleus and formed nuclear subdomains. This indicated that the OsSUMO7 precursor is processed, activated, and transported to the nucleus through the SUMOylation system of the plant cell.

6.
Saudi J Biol Sci ; 27(4): 1091-1099, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32256170

RESUMO

Generally, under normal conditions plants are resistant to many of the incompatible pathogens (viral, fungal and bacterial), and this is named "non-host resistance phenomenon". To understand this phenomenon, different types of food crops (faba bean, squash, barley and wheat) were inoculated with compatible and incompatible pathogens. Strong resistance symptoms were observed in the non-host/incompatible pathogen combinations as compared with host/compatible pathogen combinations, which showed severe infection (susceptibility). Reactive oxygen species (ROS) mostly hydrogen peroxide and superoxide were significantly increased early 24 and 48 h after inoculation (hai) in the non-host plants comparing to the host. Antioxidant enzymes activity (catalase, polyphenol oxidase and peroxidase) were not increased at the same early time 24, 48 hai in the non-host resistant and host resistant plants, however, it increased later at 72 and 168 hai. Electrolyte leakage decreased significantly in non-host resistant and host resistant/pathogen combinations. Catalase and peroxidase genes were significantly expressed in non-host resistant and in host resistant plants as compared to the host susceptible one, which did not show expression using RT-PCR technique. Furthermore, Yr5, Yr18 and Yr26 resistant genes were identified positively using PCR in all treatments either host susceptible or non-host resistant plants in which prove that no clear role of these resistant genes in resistance. Early accumulation of ROS could have a dual roles, first role is preventing the growth or killing the pathogens early in the non-host, second, stimulating the gene appearance of related genes in addition the activition of antioxidant enzymes later on which thereby, neutralize the harmful effect of ROS and consequently suppressing disease symptoms. The new finding from this study supporting the plant breeders with new source of resistance to develop new resistant cultivars and/or stop the breakdown of resistance in resistant cultivars.

7.
Saudi J Biol Sci ; 27(1): 352-357, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31889857

RESUMO

Small ubiquitin-related modifier (SUMO) genes regulate various functions of target proteins through post-translational modification. The SUMO proteins have a similar 3-dimensional structure as that of ubiquitin proteins and occur through a cascade of enzymatic reactions. In the present study we have cloned a new SUMO gene from Tomato (Solanum lycopersicum L.), cv Saudi-1, named SlS-SUMO1 gene by PCR using specific primers. This gene has SUMO member's features such as C-terminal diglycine (GG) motif as processing site by ULP (ubiquitin-like SUMO protease) and has SUMO consensus ΨKXE/D sequence. Phylogenetic analysis showed that SlS-SUMO1 gene is highly conserved and homologous to Potatoes Ca-SUMO1 and Ca-SUMO2 genes based on sequence similarity. Expression protein of SlS-SUMO1 gene found to be localized in the nucleus, cytoplasm, and nuclear envelop or nuclear pore complex. SUMO conjugating enzyme SCE1a with SlS-SUMO1 protein co-expressed and co-localized in nucleus and formed nuclear subdomains. This study reported that the SlS-SUMO1 gene is a member of SUMO family and its SUMO protein processing using GG motif and activate and transport to nucleus through Sumoylation system in the plant cell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...