Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 10500, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006995

RESUMO

Nanomaterials have significantly contributed in the field of nanomedicine as this subject matter has combined the usefulness of natural macromolecules with organic and inorganic nanomaterials. In this respect, various types of nanocomposites are increasingly being explored in order to discover an effective approach in controlling high morbidity and mortality rate that had triggered by the evolution and emergence of multidrug resistant microorganisms. Current research is focused towards the production of biogenic silver nanoparticles for the fabrication of antimicrobial metallic-polymer-based non-cytotoxic nanocomposite system. An ecofriendly approach was adapted for the production of silver nanoparticles using fungal biomass (Aspergillus fumigatus KIBGE-IB33). The biologically synthesized nanoparticles were further layered with a biodegradable macromolecule (chitosan) to improve and augment the properties of the developed nanocomposite system. Both nanostructures were characterized using different spectrographic analyses including UV-visible and scanning electron microscopy, energy dispersive X-ray analysis, dynamic light scattering, and Fourier transform infrared spectroscopic technique. The biologically mediated approach adapted in this study resulted in the formation of highly dispersed silver nanoparticles that exhibited an average nano size and zeta potential value of 05 nm (77.0%) and - 22.1 mV, respectively with a polydispersity index of 0.4. Correspondingly, fabricated silver-chitosan nanocomposites revealed a size of 941 nm with a zeta potential and polydispersity index of + 63.2 mV and 0.57, respectively. The successful capping of chitosan on silver nanoparticles prevented the agglomeration of nanomaterial and also facilitated the stabilization of the nano system. Both nanoscopic entities exhibited antimicrobial potential against some pathogenic bacterial species but did not displayed any antifungal activity. The lowest minimal inhibitory concentration of nanocomposite system (1.56 µg ml-1) was noticed against Enterococcus faecalis ATCC 29212. Fractional inhibitory concentration index of the developed nanocomposite system confirmed its improved synergistic behavior against various bacterial species with no cytotoxic effect on NIH/3T3 cell lines. Both nanostructures, developed in the present study, could be utilized in the form of nanomedicines or nanocarrier system after some quantifiable trials as both of them are nonhazardous and have substantial antibacterial properties.


Assuntos
Antibacterianos/química , Nanopartículas Metálicas/química , Nanocompostos/química , Polímeros/química , Prata/química , Antibacterianos/farmacologia , Quitosana/química , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Microb Pathog ; 149: 104499, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32956794

RESUMO

Cancer remains a foremost cause of deaths worldwide, despite several advances in the medical science. The conventional chemotherapeutic methods are not only harmful for normal body cells but also become inactive due to the development of resistance by cancer cells. Therefore, the demand of safe anticancer agents is increasing and enforced the bottomless research on the bacteriocins. Several studies have reported the selective anticancer property of bacteriocins. Current research is the contribution to explore the exact mechanism of action and in vitro application of bacteriocin (BAC-IB17) as an oncolytic agent. In this study, ß-lactamase mediated resistance of methicillin resistant Staphylococcus aureus (MRSA) was studied and inhibitory mechanism of MRSA by BAC-IB17 was investigated. Cytotoxic studies were conducted to analyze the anticancerous potential of BAC-IB17. Results revealed that BAC-IB17 inhibited the ß-lactamase and produced profound effect on the membrane integrity of MRSA confirmed by scanning electron microscope (SEM). FTIR spectroscopic analysis revealed the changes in the functional groups of bacterial cells before and after treatment with BAC-IB17. BAC-IB17 also found anticancer in nature as it kills HeLa cell lines with the IC50 value of 12.5 µg mL-1 with no cytotoxic effect on normal cells at this concentration. This specific anticancer property of BAC-IB17 will make it a promising candidate for the treatment of cancer after further clinical trials. Moreover, BAC-IB17 may control MDR bacteria responsible for the secondary complications in cancer patients.


Assuntos
Bacteriocinas , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Células HeLa , Humanos , Testes de Sensibilidade Microbiana , beta-Lactamases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...