Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(3): 4267-4274, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36630212

RESUMO

Dynamic windows allow monitoring of in-door solar radiation and thus improve user comfort and energy efficiency in buildings and vehicles. Existing technologies are, however, hampered by limitations in switching speed, energy efficiency, user control, or production costs. Here, we introduce a new concept for self-powered switchable glazing that combines a nematic liquid crystal, as an electro-optic active layer, with an organic photovoltaic material. The latter aligns the liquid crystal molecules and generates, under illumination, an electric field that changes the molecular orientation and thereby the device transmittance in the visible and near-infrared region. Small-area devices can be switched from clear to dark in hundreds of milliseconds without an external power supply. The drop in transmittance can be adjusted using a variable resistor and is shown to be reversible and stable for more than 5 h. First solution-processed large-area (15 cm2) devices are presented, and prospects for smart window applications are discussed.

2.
Molecules ; 23(9)2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30213056

RESUMO

Direct Heteroarylation Polymerization (DHAP) is becoming a valuable alternative to classical polymerization methods being used to synthesize π-conjugated polymers for organic electronics applications. In previous work, we showed that theoretical calculations on activation energy (Ea) of the C⁻H bonds were helpful to rationalize and predict the selectivity of the DHAP. For readers' convenience, we have gathered in this work all our previous theoretical calculations on Ea and performed new ones. Those theoretical calculations cover now most of the widely utilized electron-rich and electron-poor moieties studied in organic electronics like dithienyl-diketopyrrolopyrrole (DT-DPP) derivatives. Theoretical calculations reported herein show strong modulation of the Ea of C⁻H bond on DT-DPP when a bromine atom or strong electron withdrawing groups (such as fluorine or nitrile) are added to the thienyl moiety. Based on those theoretical calculations, new cyanated dithienyl-diketopyrrolopyrrole (CNDT-DPP) monomers and copolymers were prepared by DHAP and their electro-optical properties were compared with their non-fluorinated and fluorinated analogues.


Assuntos
Cianatos/química , Pirróis/síntese química , Estrutura Molecular , Polimerização , Pirróis/química , Energia Solar
3.
Molecules ; 23(6)2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29799506

RESUMO

In this work, a new n-type polymer based on a thiazole-diketopyrrolopyrrole unit has been synthesized through direct (hetero)arylation polycondensation. The molar mass has been optimized by systematic variation of the the monomer concentration. Optical and electrochemical properties have been studied. They clearly suggested that this polymer possess a high electron affinity together with a very interesting absorption band, making it a good non-fullerene acceptor candidate. As a consequence, its charge transport and photovoltaic properties in a blend with the usual P3HT electron-donating polymer have been investigated.


Assuntos
Elétrons , Cetonas/síntese química , Polímeros/síntese química , Pirróis/síntese química , Tiazóis/síntese química , Técnicas de Química Sintética , Transporte de Elétrons , Peso Molecular , Energia Solar , Termodinâmica
4.
Polymers (Basel) ; 8(1)2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979109

RESUMO

Solution-processed bulk heterojunction solar cells have experienced a remarkable acceleration in performances in the last two decades, reaching power conversion efficiencies above 10%. This impressive progress is the outcome of a simultaneous development of more advanced device architectures and of optimized semiconducting polymers. Several chemical approaches have been developed to fine-tune the optoelectronics and structural polymer parameters required to reach high efficiencies. Fluorination of the conjugated polymer backbone has appeared recently to be an especially promising approach for the development of efficient semiconducting polymers. As a matter of fact, most currently best-performing semiconducting polymers are using fluorine atoms in their conjugated backbone. In this review, we attempt to give an up-to-date overview of the latest results achieved on fluorinated polymers for solar cells and to highlight general polymer properties' evolution trends related to the fluorination of their conjugated backbone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...