Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Methods ; 171: 97-107, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31051252

RESUMO

Here, the in vitro engineering of a cartilage-like tissue by using decellularized extracellular matrix scaffold (hECM) seeded with human adipose stem cells (hASCs) which can both be isolated from the human waste adipose tissue is described. Cell-free, highly fibrous and porous hECM was produced using a protocol containing physical (homogenization, centrifugation, molding) and chemical (crosslinking) treatments, characterized by SEM, histochemistry, immunohistochemistry and in vitro cell interaction study. A construct of hECM seeded with hASCs was cultured in chondrogenic medium (with TGF-ß3 and BMP-6) for 42 days. SEM and histology showed that the biological scaffold was highly porous and had a compact structure suitable for handling and subsequent cell culture stages. Cells successfully integrated into the scaffold and had good cellular viability and continuity to proliferate. Constructs showed the formation of cartilage-like tissue with the synthesis of cartilage-specific proteins, Collagen type II and Aggrecan. Dimethylmethylene blue dye binding assay demonstrated that the GAG content of the constructs was in tendency to increase with time confirming chondrogenic differentiation of hASCs. The results support that human waste adipose tissue is an important source for decellularized hECM as well as stem cells, and adipose hECM scaffold provides a suitable environment for chondrogenic differentiation of hASCs.


Assuntos
Tecido Adiposo/citologia , Cartilagem/crescimento & desenvolvimento , Condrogênese/efeitos dos fármacos , Engenharia Tecidual , Adipócitos/citologia , Adipócitos/transplante , Tecido Adiposo/transplante , Animais , Cartilagem/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Condrogênese/genética , Matriz Extracelular , Humanos , Porosidade , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Alicerces Teciduais/química
2.
J Am Soc Nephrol ; 24(3): 377-84, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23274426

RESUMO

Renal microangiopathies and membranoproliferative GN (MPGN) can manifest similar clinical presentations and histology, suggesting the possibility of a common underlying mechanism in some cases. Here, we performed homozygosity mapping and whole exome sequencing in a Turkish consanguineous family and identified DGKE gene variants as the cause of a membranoproliferative-like glomerular microangiopathy. Furthermore, we identified two additional DGKE variants in a cohort of 142 unrelated patients diagnosed with membranoproliferative GN. This gene encodes the diacylglycerol kinase DGKε, which is an intracellular lipid kinase that phosphorylates diacylglycerol to phosphatidic acid. Immunofluorescence confocal microscopy demonstrated that mouse and rat Dgkε colocalizes with the podocyte marker WT1 but not with the endothelial marker CD31. Patch-clamp experiments in human embryonic kidney (HEK293) cells showed that DGKε variants affect the intracellular concentration of diacylglycerol. Taken together, these results not only identify a genetic cause of a glomerular microangiopathy but also suggest that the phosphatidylinositol cycle, which requires DGKE, is critical to the normal function of podocytes.


Assuntos
Diacilglicerol Quinase/genética , Glomerulonefrite Membranoproliferativa/enzimologia , Glomerulonefrite Membranoproliferativa/genética , Nefropatias/enzimologia , Nefropatias/genética , Mutação , Sequência de Aminoácidos , Animais , Sequência de Bases , Estudos de Coortes , Consanguinidade , DNA/genética , Diacilglicerol Quinase/metabolismo , Diagnóstico Diferencial , Diglicerídeos/metabolismo , Feminino , Variação Genética , Glomerulonefrite Membranoproliferativa/patologia , Células HEK293 , Humanos , Nefropatias/patologia , Glomérulos Renais/enzimologia , Masculino , Camundongos , Dados de Sequência Molecular , Linhagem , Podócitos/metabolismo , Polimorfismo de Nucleotídeo Único , Ratos , Homologia de Sequência de Aminoácidos , Turquia
3.
N Engl J Med ; 365(4): 295-306, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21756023

RESUMO

BACKGROUND: Focal segmental glomerulosclerosis is a kidney disease that is manifested as the nephrotic syndrome. It is often resistant to glucocorticoid therapy and progresses to end-stage renal disease in 50 to 70% of patients. Genetic studies have shown that familial focal segmental glomerulosclerosis is a disease of the podocytes, which are major components of the glomerular filtration barrier. However, the molecular cause in over half the cases of primary focal segmental glomerulosclerosis is unknown, and effective treatments have been elusive. METHODS: We performed whole-genome linkage analysis followed by high-throughput sequencing of the positive-linkage area in a family with autosomal recessive focal segmental glomerulosclerosis (index family) and sequenced a newly discovered gene in 52 unrelated patients with focal segmental glomerulosclerosis. Immunohistochemical studies were performed on human kidney-biopsy specimens and cultured podocytes. Expression studies in vitro were performed to characterize the functional consequences of the mutations identified. RESULTS: We identified two mutations (A159P and Y695X) in MYO1E, which encodes a nonmuscle class I myosin, myosin 1E (Myo1E). The mutations in MYO1E segregated with focal segmental glomerulosclerosis in two independent pedigrees (the index family and Family 2). Patients were homozygous for the mutations and did not have a response to glucocorticoid therapy. Electron microscopy showed thickening and disorganization of the glomerular basement membrane. Normal expression of Myo1E was documented in control human kidney-biopsy specimens in vivo and in glomerular podocytes in vitro. Transfection studies revealed abnormal subcellular localization and function of the A159P-Myo1E mutant. The Y695X mutation causes loss of calmodulin binding and of the tail domains of Myo1E. CONCLUSIONS: MYO1E mutations are associated with childhood-onset, glucocorticoid-resistant focal segmental glomerulosclerosis. Our data provide evidence of a role of Myo1E in podocyte function and the consequent integrity of the glomerular filtration barrier.


Assuntos
Glomerulosclerose Segmentar e Focal/genética , Mutação , Miosina Tipo I/genética , Idade de Início , Animais , Criança , Pré-Escolar , Resistência a Medicamentos , Feminino , Genes Recessivos , Ligação Genética , Estudo de Associação Genômica Ampla , Glomerulosclerose Segmentar e Focal/patologia , Glucocorticoides/uso terapêutico , Humanos , Lactente , Glomérulos Renais/irrigação sanguínea , Glomérulos Renais/ultraestrutura , Masculino , Camundongos , Microscopia de Fluorescência , Mutação de Sentido Incorreto , Miosina Tipo I/química , Miosina Tipo I/metabolismo , Linhagem , Podócitos/metabolismo , Podócitos/ultraestrutura , Alinhamento de Sequência
4.
Am J Hum Genet ; 89(1): 139-47, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21722858

RESUMO

Idiopathic nephrotic syndrome (INS) is a genetically heterogeneous group of disorders characterized by proteinuria, hypoalbuminemia, and edema. Because it typically results in end-stage kidney disease, the steroid-resistant subtype (SRNS) of INS is especially important when it occurs in children. The present study included 29 affected and 22 normal individuals from 17 SRNS families; genome-wide analysis was performed with Affymetrix 250K SNP arrays followed by homozygosity mapping. A large homozygous stretch on chromosomal region 12p12 was identified in one consanguineous family with two affected siblings. Direct sequencing of protein tyrosine phosphatase receptor type O (PTPRO; also known as glomerular epithelial protein-1 [GLEPP1]) showed homozygous c.2627+1G>T donor splice-site mutation. This mutation causes skipping of the evolutionarily conserved exon 16 (p.Glu854_Trp876del) at the RNA level. Immunohistochemistry with GLEPP1 antibody showed a similar staining pattern in the podocytes of the diseased and control kidney tissues. We used a highly polymorphic intragenic DNA marker-D12S1303-to search for homozygosity in 120 Turkish and 13 non-Turkish individuals in the PodoNet registry. This analysis yielded 17 candidate families, and a distinct homozygous c.2745+1G>A donor splice-site mutation in PTPRO was further identified via DNA sequencing in a second Turkish family. This mutation causes skipping of exon 19, and this introduces a premature stop codon at the very beginning of exon 20 (p.Asn888Lysfs*3) and causes degradation of mRNA via nonsense-mediated decay. Immunohistochemical analysis showed complete absence of immunoreactive PTPRO. Ultrastructural alterations, such as diffuse foot process fusion and extensive microvillus transformation of podocytes, were observed via electron microscopy in both families. The present study introduces mutations in PTPRO as another cause of autosomal-recessive nephrotic syndrome.


Assuntos
Síndrome Nefrótica/congênito , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Adolescente , Idade de Início , Sequência de Aminoácidos , Criança , Pré-Escolar , Cromossomos Humanos Par 12 , Códon sem Sentido/genética , Consanguinidade , Éxons , Feminino , Genes Recessivos , Estudo de Associação Genômica Ampla/métodos , Homozigoto , Humanos , Masculino , Dados de Sequência Molecular , Síndrome Nefrótica/genética , Linhagem , Polimorfismo de Nucleotídeo Único , Sítios de Splice de RNA , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...