Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biomolecules ; 13(2)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36830639

RESUMO

α-Synucleinopathies are spreading neurodegenerative disorders characterized by the intracellular accumulation of insoluble aggregates populated by α-Synuclein (α-Syn) fibrils. In Parkinson's disease (PD) and dementia with Lewy bodies, intraneuronal α-Syn aggregates are referred to as Lewy bodies in the somata and as Lewy neurites in the neuronal processes. In multiple system atrophy (MSA) α-Syn aggregates are also found within mature oligodendrocytes (OLs) where they form Glial Cytoplasmic Inclusions (GCIs). However, the origin of GCIs remains enigmatic: (i) mature OLs do not express α-Syn, precluding the seeding and the buildup of inclusions and (ii) the artificial overexpression of α-Syn in OLs of transgenic mice results in a burden of soluble phosphorylated α-Syn but fails to form α-Syn fibrils. In contrast, mass spectrometry of α-Syn fibrillar aggregates from MSA patients points to the neuronal origin of the proteins intimately associated with the fibrils within the GCIs. This suggests that GCIs are preassembled in neurons and only secondarily incorporated into OLs. Interestingly, we recently isolated a synthetic human α-Syn fibril strain (1B fibrils) capable of seeding a type of neuronal inclusion observed early and specifically during MSA. Our goal was thus to investigate whether the neuronal α-Syn pathology seeded by 1B fibrils could eventually be transmitted to OLs to form GCIs in vivo. After confirming that mature OLs did not express α-Syn to detectable levels in the adult mouse brain, a series of mice received unilateral intra-striatal injections of 1B fibrils. The resulting α-Syn pathology was visualized using phospho-S129 α-Syn immunoreactivity (pSyn). We found that even though 1B fibrils were injected unilaterally, many pSyn-positive neuronal somas were present in layer V of the contralateral perirhinal cortex after 6 weeks. This suggested a fast retrograde spread of the pathology along the axons of crossing cortico-striatal neurons. We thus scrutinized the posterior limb of the anterior commissure, i.e., the myelinated interhemispheric tract containing the axons of these neurons: we indeed observed numerous pSyn-positive linear Lewy Neurites oriented parallel to the commissural axis, corresponding to axonal segments filled with aggregated α-Syn, with no obvious signs of OL α-Syn pathology at this stage. After 6 months however, the commissural Lewy neurites were no longer parallel but fragmented, curled up, sometimes squeezed in-between two consecutive OLs in interfascicular strands, or even engulfed inside OL perikarya, thus forming GCIs. We conclude that the 1B fibril strain can rapidly induce an α-Syn pathology typical of MSA in mice, in which the appearance of GCIs results from the pruning of diseased axonal segments containing aggregated α-Syn.


Assuntos
Atrofia de Múltiplos Sistemas , Sinucleinopatias , Humanos , Camundongos , Animais , alfa-Sinucleína/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Corpos de Lewy/metabolismo , Corpos de Inclusão/metabolismo , Sinucleinopatias/metabolismo , Oligodendroglia/metabolismo , Neuritos/metabolismo , Camundongos Transgênicos , Encéfalo/metabolismo
3.
Vaccines (Basel) ; 10(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36146508

RESUMO

The progressive accumulation of misfolded α-synuclein (α-syn) in the brain is widely considered to be causal for the debilitating clinical manifestations of synucleinopathies including, most notably, Parkinson's disease (PD). Immunotherapies, both active and passive, against α-syn have been developed and are promising novel treatment strategies for such disorders. To increase the potency and specificity of PD vaccination, we created the 'Win the Skin Immune System Trick' (WISIT) vaccine platform designed to target skin-resident dendritic cells, inducing superior B and T cell responses. Of the six tested WISIT candidates, all elicited higher immune responses compared to conventional, aluminum adjuvanted peptide-carrier conjugate PD vaccines, in BALB/c mice. WISIT-induced antibodies displayed higher selectivity for α-syn aggregates than those induced by conventional vaccines. Additionally, antibodies induced by two selected candidates were shown to inhibit α-syn aggregation in a dose-dependent manner in vitro. To determine if α-syn fibril formation could also be inhibited in vivo, WISIT candidate type 1 (CW-type 1) was tested in an established synucleinopathy seeding model and demonstrated reduced propagation of synucleinopathy in vivo. Our studies provide proof-of-concept for the efficacy of the WISIT vaccine technology platform and support further preclinical and clinical development of this vaccine candidate.

4.
Biomolecules ; 12(4)2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35454083

RESUMO

In 1957, Lionel Penrose built the first man-made self-replicating mechanical device and illustrated its function in a series of machine prototypes, prefiguring our current view of the genesis and the proliferation of amyloid fibrils. He invented and demonstrated, with the help of his son Roger, the concepts that decades later, would become the fundamentals of prion and prion-like neurobiology: nucleation, seeding and conformational templating of monomers, linear polymer elongation, fragmentation, and spread. He published his premonitory discovery in a movie he publicly presented at only two conferences in 1958, a movie we thus reproduce here. By making a 30-year-jump in the early 90's, we evoke the studies performed by Peter Lansbury and his group in which α-Synuclein (α-Syn) was for the first time (i) compared to a prion; (ii) shown to contain a fibrillization-prone domain capable of seeding its own assembly into fibrils; (iii) identified as an intrinsically disordered protein (IDP), and which, in the early 2000s, (iv) was described by one of us as a protein chameleon. We use these temporally distant breakthroughs to propose that the combination of the chameleon nature of α-Syn with the rigid gear of the Penrose machine is sufficient to account for a phenomenon that is of current interest: the emergence and the spread of a variety of α-Syn fibril strains in α-Synucleinopathies.


Assuntos
Proteínas Intrinsicamente Desordenadas , Príons , Sinucleinopatias , Amiloide , Humanos , alfa-Sinucleína/metabolismo
5.
Biomolecules ; 12(3)2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35327628

RESUMO

The distinct neuropathological features of the different α-Synucleinopathies, as well as the diversity of the α-Synuclein (α-Syn) intracellular inclusion bodies observed in post mortem brain sections, are thought to reflect the strain diversity characterizing invasive α-Syn amyloids. However, this "one strain, one disease" view is still hypothetical, and to date, a possible disease-specific contribution of non-amyloid factors has not been ruled out. In Multiple System Atrophy (MSA), the buildup of α-Syn inclusions in oligodendrocytes seems to result from the terminal storage of α-Syn amyloid aggregates first pre-assembled in neurons. This assembly occurs at the level of neuronal cytoplasmic inclusions, and even earlier, within neuronal intranuclear inclusions (NIIs). Intriguingly, α-Syn NIIs are never observed in α-Synucleinopathies other than MSA, suggesting that these inclusions originate (i) from the unique molecular properties of the α-Syn fibril strains encountered in this disease, or alternatively, (ii) from other factors specifically dysregulated in MSA and driving the intranuclear fibrillization of α-Syn. We report the isolation and structural characterization of a synthetic human α-Syn fibril strain uniquely capable of seeding α-Syn fibrillization inside the nuclear compartment. In primary mouse cortical neurons, this strain provokes the buildup of NIIs with a remarkable morphology reminiscent of cat's eye marbles (see video abstract). These α-Syn inclusions form giant patterns made of one, two, or three lentiform beams that span the whole intranuclear volume, pushing apart the chromatin. The input fibrils are no longer detectable inside the NIIs, where they become dominated by the aggregation of endogenous α-Syn. In addition to its phosphorylation at S129, α-Syn forming the NIIs acquires an epitope antibody reactivity profile that indicates its organization into fibrils, and is associated with the classical markers of α-Syn pathology p62 and ubiquitin. NIIs are also observed in vivo after intracerebral injection of the fibril strain in mice. Our data thus show that the ability to seed NIIs is a strain property that is integrally encoded in the fibril supramolecular architecture. Upstream alterations of cellular mechanisms are not required. In contrast to the lentiform TDP-43 NIIs, which are observed in certain frontotemporal dementias and which are conditional upon GRN or VCP mutations, our data support the hypothesis that the presence of α-Syn NIIs in MSA is instead purely amyloid-strain-dependent.


Assuntos
Atrofia de Múltiplos Sistemas , Sinucleinopatias , Amiloide , Animais , Encéfalo/metabolismo , Corpos de Inclusão Intranuclear/metabolismo , Corpos de Inclusão Intranuclear/patologia , Camundongos , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/patologia , Neurônios/metabolismo , alfa-Sinucleína/metabolismo
6.
NPJ Parkinsons Dis ; 8(1): 10, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027576

RESUMO

Aggregated alpha-synuclein (α-syn) is a principal constituent of Lewy bodies (LBs) and glial cytoplasmic inclusions (GCIs) observed respectively inside neurons in Parkinson's disease (PD) and oligodendrocytes in multiple system atrophy (MSA). Yet, the cellular origin, the pathophysiological role, and the mechanism of formation of these inclusions bodies (IBs) remain to be elucidated. It has recently been proposed that α-syn IBs eventually cause the demise of the host cell by virtue of the cumulative sequestration of partner proteins and organelles. In particular, the hypothesis of a local cross-seeding of other fibrillization-prone proteins like tau or TDP-43 has also been put forward. We submitted sarkosyl-insoluble extracts of post-mortem brain tissue from PD, MSA and control subjects to a comparative proteomic analysis to address these points. Our studies indicate that: (i) α-syn is by far the most enriched protein in PD and MSA extracts compared to controls; (ii) PD and MSA extracts share a striking overlap of their sarkosyl-insoluble proteomes, consisting of a vast majority of mitochondrial and neuronal synaptic proteins, and (iii) other fibrillization-prone protein candidates possibly cross-seeded by α-syn are neither found in PD nor MSA extracts. Thus, our results (i) support the idea that pre-assembled building blocks originating in neurons serve to the formation of GCIs in MSA, (ii) show no sign of amyloid cross-seeding in either synucleinopathy, and (iii) point to the sequestration of mitochondria and of neuronal synaptic components in both LBs and GCIs.

7.
Cells ; 9(11)2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138150

RESUMO

The synucleinopathy underlying multiple system atrophy (MSA) is characterized by the presence of abundant amyloid inclusions containing fibrillar α-synuclein (α-syn) aggregates in the brains of the patients and is associated with an extensive neurodegeneration. In contrast to Parkinson's disease (PD) where the pathological α-syn aggregates are almost exclusively neuronal, the α-syn inclusions in MSA are principally observed in oligodendrocytes (OLs) where they form glial cytoplasmic inclusions (GCIs). This is intriguing because differentiated OLs express low levels of α-syn, yet pathogenic amyloid α-syn seeds require significant amounts of α-syn monomers to feed their fibrillar growth and to eventually cause the buildup of cytopathological inclusions. One of the transgenic mouse models of this disease is based on the targeted overexpression of human α-syn in OLs using the PLP promoter. In these mice, the histopathological images showing a rapid emergence of S129-phosphorylated α-syn inside OLs are considered as equivalent to GCIs. Instead, we report here that they correspond to the accumulation of phosphorylated α-syn monomers/oligomers and not to the appearance of the distinctive fibrillar α-syn aggregates that are present in the brains of MSA or PD patients. In spite of a propensity to co-sediment with myelin sheath contaminants, the phosphorylated forms found in the brains of the transgenic animals are soluble (>80%). In clear contrast, the phosphorylated species present in the brains of MSA and PD patients are insoluble fibrils (>95%). Using primary cultures of OLs from PLP-αSyn mice we observed a variable association of S129-phosphorylated α-syn with the cytoplasmic compartment, the nucleus and with membrane domains suggesting that OLs functionally accommodate the phospho-α-syn deriving from experimental overexpression. Yet and while not taking place spontaneously, fibrillization can be seeded in these primary cultures by challenging the OLs with α-syn preformed fibrils (PFFs). This indicates that a targeted overexpression of α-syn does not model GCIs in mice but that it can provide a basis for seeding aggregation using PFFs. This approach could help establishing a link between α-syn aggregation and the development of a clinical phenotype in these transgenic animals.


Assuntos
Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Oligodendroglia/metabolismo , Agregados Proteicos , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Proteína Básica da Mielina/metabolismo , Proteína Proteolipídica de Mielina/genética , Neurônios/metabolismo , Doença de Parkinson/patologia , Fosforilação , Fosfosserina/metabolismo , Regiões Promotoras Genéticas/genética , Multimerização Proteica
8.
Sci Adv ; 6(40)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33008896

RESUMO

The conformational strain diversity characterizing α-synuclein (α-syn) amyloid fibrils is thought to determine the different clinical presentations of neurodegenerative diseases underpinned by a synucleinopathy. Experimentally, various α-syn fibril polymorphs have been obtained from distinct fibrillization conditions by altering the medium constituents and were selected by amyloid monitoring using the probe thioflavin T (ThT). We report that, concurrent with classical ThT-positive products, fibrillization in saline also gives rise to polymorphs invisible to ThT (τ-). The generation of τ- fibril polymorphs is stochastic and can skew the apparent fibrillization kinetics revealed by ThT. Their emergence has thus been ignored so far or mistaken for fibrillization inhibitions/failures. They present a yet undescribed atomic organization and show an exacerbated propensity toward self-replication in cortical neurons, and in living mice, their injection into the substantia nigra pars compacta triggers a synucleinopathy that spreads toward the dorsal striatum, the nucleus accumbens, and the insular cortex.


Assuntos
Sinucleinopatias , alfa-Sinucleína , Amiloide , Animais , Benzotiazóis , Camundongos , Neurônios
9.
Biochim Biophys Acta Bioenerg ; 1861(12): 148289, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32810507

RESUMO

VDAC (Voltage Dependent Anion Channel) is a family of pore forming protein located in the outer mitochondrial membrane. Its channel property ensures metabolites exchange between mitochondria and the rest of the cell resulting in metabolism and bioenergetics regulation, and in cell death and life switch. VDAC1 is the best characterized and most abundant isoform, and is involved in many pathologies, as cancer or neurodegenerative diseases. However, little information is available about its gene expression regulation in normal and/or pathological conditions. In this work, we explored VDAC1 gene expression regulation in normal conditions and in the contest of some metabolic and energetic mitochondrial dysfunction and cell stress as example. The core of the putative promoter region was characterized in terms of transcription factors responsive elements both by bioinformatic studies and promoter activity experiments. In particular, we found an abundant presence of NRF-1 sites, together with other transcription factors binding sites involved in cell growth, proliferation, development, and we studied their prevalence in gene activity. Furthermore, upon depletion of nutrients or controlled hypoxia, as detected in various pathologies, we found that VDAC1 transcripts levels were significantly increased in a time related manner. VDAC1 promoter activity was also validated by gene reporter assays. According to PCR real-time experiments, it was confirmed that VDAC1 promoter activity is further stimulated when cells are exposed to stress. A bioinformatic survey suggested HIF-1α, besides NRF-1, as a most active TFBS. Their validation was obtained by TFBS mutagenesis and TF overexpression experiments. In conclusion, we experimentally demonstrated the involvement of both NRF-1 and HIF-1α in the regulation of VDAC1 promoter activation at basal level and in some peculiar cell stress conditions.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator 1 Nuclear Respiratório/metabolismo , Regiões Promotoras Genéticas , Canal de Ânion 1 Dependente de Voltagem/genética , Sítios de Ligação , Hipóxia Celular/genética , Sobrevivência Celular , Regulação da Expressão Gênica , Células HeLa , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Biogênese de Organelas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo
10.
Brain ; 143(6): 1780-1797, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32428221

RESUMO

Transportation of key proteins via extracellular vesicles has been recently implicated in various neurodegenerative disorders, including Parkinson's disease, as a new mechanism of disease spreading and a new source of biomarkers. Extracellular vesicles likely to be derived from the brain can be isolated from peripheral blood and have been reported to contain higher levels of α-synuclein (α-syn) in Parkinson's disease patients. However, very little is known about extracellular vesicles in multiple system atrophy, a disease that, like Parkinson's disease, involves pathological α-syn aggregation, though the process is centred around oligodendrocytes in multiple system atrophy. In this study, a novel immunocapture technology was developed to isolate blood CNPase-positive, oligodendrocyte-derived enriched microvesicles (OEMVs), followed by fluorescent nanoparticle tracking analysis and assessment of α-syn levels contained within the OEMVs. The results demonstrated that the concentrations of OEMVs were significantly lower in multiple system atrophy patients, compared to Parkinson's disease patients and healthy control subjects. It is also noted that the population of OEMVs involved was mainly in the size range closer to that of exosomes, and that the average α-syn concentrations (per vesicle) contained in these OEMVs were not significantly different among the three groups. The phenomenon of reduced OEMVs was again observed in a transgenic mouse model of multiple system atrophy and in primary oligodendrocyte cultures, and the mechanism involved was likely related, at least in part, to an α-syn-mediated interference in the interaction between syntaxin 4 and VAMP2, leading to the dysfunction of the SNARE complex. These results suggest that reduced OEMVs could be an important mechanism related to pathological α-syn aggregation in oligodendrocytes, and the OEMVs found in peripheral blood could be further explored for their potential as multiple system atrophy biomarkers.


Assuntos
Atrofia de Múltiplos Sistemas/fisiopatologia , Oligodendroglia/metabolismo , Proteínas SNARE/metabolismo , Idoso , Animais , Secreções Corporais/metabolismo , Encéfalo/patologia , Micropartículas Derivadas de Células/imunologia , Micropartículas Derivadas de Células/metabolismo , Modelos Animais de Doenças , Exossomos/metabolismo , Exossomos/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios/metabolismo , Doença de Parkinson/patologia , Proteínas SNARE/fisiologia , alfa-Sinucleína/metabolismo
11.
Nat Neurosci ; 22(1): 65-77, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30559480

RESUMO

Accumulation of abnormally phosphorylated TDP-43 (pTDP-43) is the main pathology in affected neurons of people with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Morphological diversity and neuroanatomical distribution of pTDP-43 accumulations allowed classification of FTLD cases into at least four subtypes, which are correlated with clinical presentations and genetic causes. To understand the molecular basis of this heterogeneity, we developed SarkoSpin, a new method for biochemical isolation of pathological TDP-43. By combining SarkoSpin with mass spectrometry, we revealed proteins beyond TDP-43 that become abnormally insoluble in a disease subtype-specific manner. We show that pTDP-43 extracted from brain forms stable assemblies of distinct densities and morphologies that are associated with disease subtypes. Importantly, biochemically extracted pTDP-43 assemblies showed differential neurotoxicity and seeding that were correlated with disease duration of FTLD subjects. Our data are consistent with the notion that disease heterogeneity could originate from alternate pathological TDP-43 conformations, which are reminiscent of prion strains.


Assuntos
Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Agregados Proteicos/fisiologia , Animais , Encéfalo/patologia , Progressão da Doença , Degeneração Lobar Frontotemporal/patologia , Células HEK293 , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Espectrometria de Massas , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Fosforilação
12.
Neurobiol Dis ; 103: 101-112, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28411117

RESUMO

Synucleinopathies are a group of diseases characterized by the presence of intracellular protein aggregates containing α-synuclein (α-syn). While α-syn aggregates have been shown to induce multimodal cellular dysfunctions, uptake and transport mechanisms remain unclear. Using high-content imaging on cortical neurons and astrocytes, we here define the kinetics of neuronal and astrocytic abnormalities induced by human-derived α-syn aggregates grounding the use of such system to identify and test putative therapeutic compounds. We then aimed at characterizing uptake and transport mechanisms using primary cultures of cortical neurons and astrocytes either in single well or in microfluidic chambers allowing connection between cells and cell-types. We report that astrocytes take up α-syn-aggregates far more efficiently than neurons through an endocytic event. We also highlight that active α-syn transport occurs between cells and any cell-types. Of special interest regarding the disease, we also show that uptake and spreading of α-syn from astrocytes to neurons can lead to neuronal death. Altogether, we here show that patients-derived α-synuclein aggregates, which are taken up by neurons and astrocytes, induce a differential endogenous response in the two cell types including a peculiar astrocytic toxic gain-of-function that leads to neuronal death.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Corpos de Lewy/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Células Cultivadas , Feminino , Humanos , Corpos de Lewy/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Doença de Parkinson/patologia , Gravidez , Ratos , Ratos Sprague-Dawley , alfa-Sinucleína/toxicidade
13.
Oncologist ; 19(12): 1227-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25355844

RESUMO

BACKGROUND: Preclinical studies demonstrated that non-nucleoside reverse transcriptase inhibitors used for the treatment of HIV could antagonize tumor development. This led us to assess the efficacy of efavirenz in patients with metastatic castration-resistant prostate cancer (mCRPC) in a multicenter phase II study. METHODS: We used a Simon two-stage design and a 3-month prostate-specific antigen (PSA) nonprogression rate of 40% as a primary objective. Patients received 600 mg efavirenz daily with the possibility of a dose increase in case of PSA progression. Exploratory analyses included pharmacokinetics of efavirenz plasma concentrations and correlations with clinical outcomes. RESULTS: Among 53 assessable patients, we observed 15 instances of PSA nonprogression at 3 months, corresponding to a nonprogression rate of 28.3% (95% confidence interval: 16.8%-42.3%). The exploratory analysis revealed that for the 7 patients in whom optimal plasma concentration of efavirenz was achieved, PSA progression was observed in only 28.6% compared with 81.8% of patients with suboptimal plasma concentrations of efavirenz. CONCLUSION: Although 600 mg efavirenz did not statistically improve the PSA nonprogression rate, our exploratory analysis suggests that higher plasma concentrations of this drug (i.e., use of increased dosages) may be of potential benefit for the treatment of mCRPC.


Assuntos
Benzoxazinas/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Inibidores da Transcriptase Reversa/uso terapêutico , Adulto , Alcinos , Benzoxazinas/farmacocinética , Ciclopropanos , Progressão da Doença , Humanos , Masculino , Antígeno Prostático Específico/sangue , Resultado do Tratamento
14.
Sci Rep ; 3: 2387, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23925048

RESUMO

Molecular interactions are key to many chemical and biological processes like protein function. In many signaling processes they occur in sub-cellular areas displaying nanoscale organizations and involving molecular assemblies. The nanometric dimensions and the dynamic nature of the interactions make their investigations complex in live cells. While super-resolution fluorescence microscopies offer live-cell molecular imaging with sub-wavelength resolutions, they lack specificity for distinguishing interacting molecule populations. Here we combine super-resolution microscopy and single-molecule Förster Resonance Energy Transfer (FRET) to identify dimers of receptors induced by ligand binding and provide super-resolved images of their membrane distribution in live cells. By developing a two-color universal-Point-Accumulation-In-the-Nanoscale-Topography (uPAINT) method, dimers of epidermal growth factor receptors (EGFR) activated by EGF are studied at ultra-high densities, revealing preferential cell-edge sub-localization. This methodology which is specifically devoted to the study of molecules in interaction, may find other applications in biological systems where understanding of molecular organization is crucial.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Aumento da Imagem/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Imagem Molecular/métodos , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Frações Subcelulares/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Células COS , Chlorocebus aethiops , Frações Subcelulares/ultraestrutura
15.
Cell Cycle ; 12(12): 1879-91, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23676219

RESUMO

HIPK1 (homeodomain interacting protein kinase 1) is a serine/threonine kinase that belongs to the CMGC superfamily. Emerging data point to the role of HIPK1 in cancer, but it is still not clear whether it acts as a tumor suppressor or promoter. Here we identified HIPK1 as a kinase that is significantly overexpressed in colorectal cancer (CRC) and whose expression is stage-dependent. Being abundantly expressed at the onset of the disease, the HIPK1 level gradually decreased as tumor stage progressed. To further uncover how this factor regulates tumorigenesis and establish whether it constitutes an early factor necessary for neoplastic transformation or for cellular defense, we studied the effect of its overexpression in vitro by investigating various cancer-related signaling cascades. We found that HIPK1 mostly regulates the p53 signaling pathway both in HCT116 and HeLa cells. By phosphorylating p53 on its serine-15, HIPK1 favored its transactivation potential, which led to a rise in p21 protein level and a decline in cell proliferation. Assuming that HIPK1 could impede CRC growth by turning on the p53/p21 pathway, we then checked p21 mRNA levels in patients. Interestingly, p21 transcripts were only increased in a subset of patients expressing high levels of HIPK1. Unlike the rest of the cohort, the majority of these patients hosted a native p53 protein, meaning that such a pro-survival pathway (HIPK1+ > p53 > p21) is active in patients, and that HIPK1 acts rather as a tumor suppressor.


Assuntos
Neoplasias Colorretais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Western Blotting , Neoplasias Colorretais/genética , Células HCT116 , Células HeLa , Humanos , Imunoprecipitação , Técnicas In Vitro , Proteínas Serina-Treonina Quinases/genética , Proteína Supressora de Tumor p53/genética
16.
Bioorg Med Chem ; 20(22): 6724-31, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23063521

RESUMO

Monoclonal antibodies (MoAb) and tyrosine kinase inhibitors (TKI) targeting the EGFR (Epidermal Growth Factor Receptor) pathways are currently used in colorectal cancer treatment. Despite the improvement of median overall survival, resistance is observed notably due to KRAS and BRAF gene mutations. We synthesized four series of thienopyrimidines whose scaffold is structurally close to TKI used in clinical practice. We evaluated apoptosis induced by these compounds using flow cytometry on KRAS and BRAF mutated cell lines. Our results confirm that the mutated cell lines (HCT116 and HT29) are more resistant to apoptosis than the non-mutated cell line (Hela). Interestingly, among the 13 compounds tested, three of them (5b, 6b and 6d) and gefitinib exhibited a noteworthy pro-apoptotic effect, especially on mutated cell lines with an IC(50) value between 70 and 110µM. These three compounds seem particularly attractive for the development of novel treatments for colorectal cancer patients harboring EGFR pathway mutations.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/genética , Pirimidinas/toxicidade , Proteínas ras/genética , Caspases/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Células HCT116 , Células HT29 , Células HeLa , Humanos , Mutação , Proteínas Proto-Oncogênicas B-raf/metabolismo , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Proteínas ras/metabolismo
17.
PLoS One ; 7(5): e36811, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22590613

RESUMO

The antioxidant properties of α-tocopherol have been proposed to play a beneficial chemopreventive role against cancer. However, emerging data also indicate that it may exert contrasting effects on the efficacy of chemotherapeutic treatments when given as dietary supplement, being in that case harmful for patients. This dual role of α-tocopherol and, in particular, its effects on the efficacy of anticancer drugs remains poorly documented. For this purpose, we studied here, using high throughput flow cytometry, the direct impact of α-tocopherol on apoptosis and cell cycle arrest induced by different cytotoxic agents on various models of cancer cell lines in vitro. Our results indicate that physiologically relevant concentrations of α-tocopherol strongly compromise the cytotoxic and cytostatic action of various protein kinase inhibitors (KI), while other classes of chemotherapeutic agents or apoptosis inducers are unaffected by this vitamin. Interestingly, these anti-chemotherapeutic effects of α-tocopherol appear to be unrelated to its antioxidant properties since a variety of other antioxidants were completely neutral toward KI-induced cell cycle arrest and cell death. In conclusion, our data suggest that dietary α-tocopherol could limit KI effects on tumour cells, and, by extent, that this could result in a reduction of the clinical efficacy of anti-cancer treatments based on KI molecules.


Assuntos
Antineoplásicos , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases , Vitaminas , alfa-Tocoferol , Antineoplásicos/antagonistas & inibidores , Antineoplásicos/farmacologia , Suplementos Nutricionais/efeitos adversos , Antagonismo de Drogas , Células HeLa , Humanos , Neoplasias/patologia , Inibidores de Proteínas Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Vitaminas/antagonistas & inibidores , Vitaminas/farmacologia , alfa-Tocoferol/antagonistas & inibidores , alfa-Tocoferol/farmacologia
18.
Mol Pharmacol ; 82(1): 134-41, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22528119

RESUMO

Polyphenolic ellagitannins are natural compounds that are often associated with the therapeutic activity of plant extracts used in traditional medicine. They display cancer-preventing activity in animal models by a mechanism that remains unclear. Potential targets have been proposed, including DNA topoisomerases II (Top2). Top2α and Top2ß, the two isoforms of the human Top2, play a crucial role in the regulation of replication, transcription, and chromosome segregation. They are the target of anticancer agents used in the clinic such as anthracyclines (e.g., doxorubicin) or the epipodophyllotoxin etoposide. It was recently shown that the antitumor activity of etoposide was due primarily to the inhibition of Top2α, whereas inhibition of Top2ß was responsible for the development of secondary malignancies, pointing to the need for more selective Top2α inhibitors. Here, we show that the polyphenolic ellagitannin vescalagin preferentially inhibits the decatenation activity of Top2α in vitro, by a redox-independent mechanism. In CEM cells, we also show that transient small interfering RNA-mediated down-regulation of Top2α but not of Top2ß conferred a resistance to vescalagin, indicating that the α isoform is a preferential target. We further confirmed that Top2α inhibition was due to a catalytic inhibition of the enzyme because it did not induce DNA double-strand breaks in CEM-treated cells but prevented the formation of Top2α- rather than Top2ß-DNA covalent complexes induced by etoposide. To our knowledge, vescalagin is the first example of a catalytic inhibitor for which cytotoxicity is due, at least in part, to the preferential inhibition of Top2α.


Assuntos
Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Taninos Hidrolisáveis/farmacologia , Catálise , Proliferação de Células/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla , DNA de Cinetoplasto/metabolismo , Regulação para Baixo/efeitos dos fármacos , Etoposídeo/farmacologia , Humanos , Oxirredução/efeitos dos fármacos , Proteínas de Ligação a Poli-ADP-Ribose , Isoformas de Proteínas/metabolismo , Células Tumorais Cultivadas
19.
Am J Pathol ; 178(5): 1986-98, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21514416

RESUMO

The human p53 gene is a tumor suppressor mutated in half of colon cancers. Although p53 function appears important for proliferation arrest and apoptosis induced by cancer therapeutics, the prognostic significance of p53 mutations remains elusive. This suggests that p53 function is modulated at a posttranslational level and that dysfunctions affecting its modulators can have a prognostic impact. Among p53 modulators, homeodomain interacting protein kinase (HIPK) 2 emerges as a candidate "switch" governing p53 transition from a cytostatic to a proapoptotic function. Thus, we investigated the possible prognostic role of HIPK2 on a retrospective series of 80 colon cancer cases by setting up a multiplexed cytometric approach capable of exploring correlative protein expression at the single tumor cell level on TMA. Crossing the data with quantitative PCR and p53 gene sequencing and p53 functional assays, we observed the following: despite a strong impact on p21 transcription, the presence of disabling p53 mutations has no prognostic value, and the increased expression of the HIPK2 protein in tumor cells compared with paired normal tissue cells has a strong impact on survival. Unexpectedly, HIPK2 effect does not appear to be mediated by p53 function because it is also observed in p53-disabling mutated backgrounds. Thus, our results point to a prominent and p53-independent role of HIPK2 in colon cancer survival.


Assuntos
Proteínas de Transporte/biossíntese , Neoplasias do Colo/genética , Neoplasias do Colo/mortalidade , Proteínas Serina-Treonina Quinases/biossíntese , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas de Transporte/genética , Neoplasias do Colo/patologia , Análise Mutacional de DNA , Feminino , Imunofluorescência , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Proteínas Serina-Treonina Quinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise Serial de Tecidos , Proteína Supressora de Tumor p53/metabolismo
20.
Eur J Med Chem ; 45(6): 2473-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20219270

RESUMO

The receptor tyrosine kinases (for example EGFR, PDGFR, VEGFR) are a transmembrane protein family which plays a crucial role in tumor growth, survival, metastasis dissemination and angiogenesis. During the past 10 years, many tyrosine kinase inhibitors (TKIs) have been approved for cancer treatment (imatinib, gefitinib, erlotinib, sunitinib, sorafenib). These compounds generally possess a pyrrolo- or pyrimido- pyrimidine scaffold or approaching molecular structure. We synthesized 10 thienopyrimidine compounds (including 5 newly synthesized) whose scaffold is very similar to the agents cited above. The cytotoxicity of these agents was evaluated using a MTT assay and a flow cytometry technique on glioblastoma cell lines. Two compounds showed a similar cytotoxicity to the standard anti-EGFR gefitinib (IC50: gefitinib=51.9 microM, 6b=61.8 microM, 6c=41.2 microM), suggesting a blockade of the EGFR pathway by binding to the TK receptor.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Glioblastoma/patologia , Pirimidinas/síntese química , Pirimidinas/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Humanos , Concentração Inibidora 50 , Pirimidinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...