Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 111(7): e16376, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39020509

RESUMO

PREMISE: The Aptian-Albian (121.4-100.5 Ma) was a greenhouse period with global temperatures estimated as 10-15°C warmer than pre-industrial conditions, so it is surprising that the most reliable CO2 estimates from this time are <1400 ppm. This low CO2 during a warm period implies a very high Earth-system sensitivity in the range of 6 to 9°C per CO2 doubling between the Aptian-Albian and today. METHODS: We applied a well-vetted paleo-CO2 proxy based on leaf gas-exchange principles (Franks model) to two Pseudotorellia species from three stratigraphically similar samples at the Tevshiin Govi lignite mine in central Mongolia (~119.7-100.5 Ma). RESULTS: Our median estimated CO2 concentration from the three respective samples was 2132, 2405, and 2770 ppm. The primary reason for the high estimated CO2 but with relatively large uncertainties is the very low stomatal density in both species, where small variations propagate to large changes in estimated CO2. Indeed, we found that at least 15 leaves are required before the aggregate estimated CO2 approaches that of the full data set. CONCLUSIONS: Our three CO2 estimates all exceeded 2000 ppm, translating to an Earth-system sensitivity (~3-5°C/CO2 doubling) that is more in keeping with the current understanding of the long-term climate system. Because of our large sample size, the directly measured inputs did not contribute much to the overall uncertainty in estimated CO2; instead, the inferred inputs were responsible for most of the overall uncertainty and thus should be scrutinized for their value choices.


Assuntos
Atmosfera , Dióxido de Carbono , Estômatos de Plantas , Dióxido de Carbono/análise , Mongólia , Estômatos de Plantas/fisiologia , Atmosfera/química , Isótopos de Carbono/análise , Fósseis , Isótopos de Oxigênio/análise , Folhas de Planta/química
2.
Am J Bot ; 111(2): e16268, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38050806

RESUMO

PREMISE: Fossil seeds recovered from the Early Cretaceous of Mongolia and Inner Mongolia, China, are described and assigned to Mongolitria gen. nov., a new genus of gymnosperm seed. METHODS: Abundant lignitized seeds along with compression specimens isolated from the matrix were studied using a combination of scanning electron microscopy, anatomical sectioning, light microscopy, synchrotron radiation X-ray microtomography, and cuticle preparations. A single permineralized seed was examined by light microscopy of cellulose acetate peels and X-ray microtomography. RESULTS: Two species are recognized, Mongolitria friisae sp. nov. and Mongolitria exesum sp. nov. Both seeds are orthotropous with a short apical micropyle and a small, basal, circular attachment scar. The thick sclerenchymatous integument has a consistently three-parted organization and about 20 conspicuous longitudinal ribs on the surface. Mongolitria exesum differs from M. friisae primarily in its much larger size and thicker seed coat, which also preserves clear evidence of insect damage. CONCLUSIONS: Mongolitria is similar to other fossil seeds that have been assigned to Cycadales, but displays a unique combination of characters not found in any living or extinct cycadaceous plant, leaving its higher-level systematic affinities uncertain. Germination apparently involved splitting of the integument into three valves. Mongolitria was prominent among the plant parts accumulating in peat swamps in eastern Asia during the Early Cretaceous.


Assuntos
Evolução Biológica , Sementes , Microscopia Eletrônica de Varredura , China , Cycadopsida , Fósseis , Filogenia
3.
Sci Rep ; 12(1): 21894, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536054

RESUMO

Understanding climate variability and stability under extremely warm 'greenhouse' conditions in the past is essential for future climate predictions. However, information on millennial-scale (and shorter) climate variability during such periods is scarce, owing to a lack of suitable high-resolution, deep-time archives. Here we present a continuous record of decadal- to orbital-scale continental climate variability from annually laminated lacustrine deposits formed during the late Early Cretaceous (123-120 Ma: late Barremian-early Aptian) in southeastern Mongolia. Inter-annual changes in lake algal productivity for a 1091-year interval reveal a pronounced solar influence on decadal- to centennial-scale climatic variations (including the ~ 11-year Schwabe cycle). Decadally-resolved Ca/Ti ratios (proxy for evaporation/precipitation changes) for a ~ 355-kyr long interval further indicate millennial-scale (~ 1000-2000-yr) extreme drought events in inner-continental areas of mid-latitude palaeo-Asia during the Cretaceous. Millennial-scale oscillations in Ca/Ti ratio show distinct amplitude modulation (AM) induced by the precession, obliquity and short eccentricity cycles. Similar millennial-scale AM by Milankovitch cycle band was also previously observed in the abrupt climatic oscillations (known as Dansgaard-Oeschger events) in the 'intermediate glacial' state of the late Pleistocene, and in their potential analogues in the Jurassic 'greenhouse'. Our findings indicate that external solar activity forcing was effective on decadal-centennial timescales, whilst the millennial-scale variations were likely amplified by internal process such as changes in deep-water formation strength, even during the Cretaceous 'greenhouse' period.


Assuntos
Sedimentos Geológicos , Água , Tempo , Ásia , Plantas
4.
Am J Bot ; 108(8): 1483-1499, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34458982

RESUMO

PREMISE: Seed cones of extant Pinaceae exhibit two mechanisms of seed release. In "flexers" the cone scales remain attached to the central axis, while flexing and separating from each other to release the seeds. In "shedders" scales are shed from the axis, with the seeds either remaining attached to the scale or becoming detached. The early fossil history of Pinaceae from the Jurassic to Early Cretaceous is dominated by flexing seed cones, while the systematic information provided by shedding fossil cones has been overlooked and rarely integrated with data based on compression and permineralized specimens. We describe the earliest and best-documented evidence of a "shedder" seed cone from the Aptian-Albian of Mongolia. METHODS: Lignite samples from Tevshiin Govi locality were disaggregated in water, washed, and dried in air. Fossils were compared to material of extant Pinaceae using LM and CT scans. RESULTS: Lepidocasus mellonae gen. et sp. nov. is characterized by a seed cone that disarticulated at maturity and shed obovate bract-scale complexes that have a distinctive ribbed surface and an abaxial surface covered with abundant trichomes. The ovuliferous scale has ca. 30-40 resin canals, but only scarce xylem near the attachment to the cone axis. Resin vesicles are present in the seed integument. Phylogenetic analysis places Lepidocasus as sister to extant Cedrus within the abietoid grade. CONCLUSIONS: The exquisite preservation of the trichomes in L. mellonae raises questions about their potential ecological function in the cones of fossil and living Pinaceae. Lepidocasus mellonae also shows that a shedding dispersal syndrome, a feature that has often been overlooked, evolved early in the history of Pinaceae during the Early Cretaceous.


Assuntos
Pinaceae , Fósseis , Mongólia , Filogenia , Sementes
5.
PLoS One ; 15(1): e0226779, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31940374

RESUMO

Previously unrecognized anatomical features of the cone scales of the enigmatic Early Cretaceous conifer Krassilovia mongolica include the presence of transversely oriented paracytic stomata, which is unusual for all other extinct and extant conifers. Identical stomata are present on co-occurring broad, linear, multiveined leaves assigned to Podozamites harrisii, providing evidence that K. mongolica and P. harrisii are the seed cones and leaves of the same extinct plant. Phylogenetic analyses of the relationships of the reconstructed Krassilovia plant place it in an informal clade that we name the Krassilovia Clade, which also includes Swedenborgia cryptomerioides-Podozamites schenkii, and Cycadocarpidium erdmanni-Podozamites schenkii. All three of these plants have linear leaves that are relatively broad compared to most living conifers, and that are also multiveined with transversely oriented paracytic stomata. We propose that these may be general features of the Krassilovia Clade. Paracytic stomata, and other features of this new group, recall features of extant and fossil Gnetales, raising questions about the phylogenetic homogeneity of the conifer clade similar to those raised by phylogenetic analyses of molecular data.


Assuntos
Traqueófitas/anatomia & histologia , Filogenia , Folhas de Planta/anatomia & histologia , Sementes/anatomia & histologia , Terminologia como Assunto , Traqueófitas/classificação
6.
Paleobiodivers Paleoenviron ; 97(1): 111-218, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28450965

RESUMO

Cenozoic sediments of the Taatsiin Gol and TaatsiinTsagaan Nuur area are rich in fossils that provide unique evidence of mammal evolution in Mongolia. The strata are intercalated with basalt flows. 40Ar/39Ar data of the basalts frame the time of sediment deposition and mammal evolution and enable a composite age chronology for the studied area. We investigated 20 geological sections and 6 fossil localities of Oligocene and early Miocene deposits from this region. Seventy fossil beds yielded more than 19,000 mammal fossils. This huge collection encompasses 175 mammal species: 50% Rodentia, 13% Eulipotyphla and Didelphomorphia, and 12% Lagomorpha. The remaining 25% of species are distributed among herbivorous and carnivorous large mammals. The representation of lower vertebrates and gastropods is comparatively poor. Several hundred SEM images illustrate the diversity of Marsupialia, Eulipotyphla, and Rodentia dentition and give insight into small mammal evolution in Mongolia during the Oligocene and early Miocene. This dataset, the radiometric ages of basalt I (∼31.5 Ma) and basalt II (∼27 Ma), and the magnetostratigraphic data provide ages of mammal assemblages and time ranges of the Mongolian biozones: letter zone A ranges from ∼33 to ∼31.5 Ma, letter zone B from ∼31.5 to ∼28 Ma, letter zone C from ∼28 to 25.6 Ma, letter zone C1 from 25.6 to 24 Ma, letter zone C1-D from 24 to ∼23 Ma, and letter zone D from ∼23 to ∼21 Ma.

7.
Proc Natl Acad Sci U S A ; 114(12): E2385-E2391, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28265050

RESUMO

The origins of the five groups of living seed plants, including the single relictual species Ginkgo biloba, are poorly understood, in large part because of very imperfect knowledge of extinct seed plant diversity. Here we describe well-preserved material from the Early Cretaceous of Mongolia of the previously enigmatic Mesozoic seed plant reproductive structure Umaltolepis, which has been presumed to be a ginkgophyte. Abundant new material shows that Umaltolepis is a seed-bearing cupule that was borne on a stalk at the tip of a short shoot. Each cupule is umbrella-like with a central column that bears a thick, resinous, four-lobed outer covering, which opens from below. Four, pendulous, winged seeds are attached to the upper part of the column and are enclosed by the cupule. Evidence from morphology, anatomy, and field association suggests that the short shoots bore simple, elongate Pseudotorellia leaves that have similar venation and resin ducts to leaves of living GinkgoUmaltolepis seed-bearing structures are very different from those of Ginkgo but very similar to fossils described previously as Vladimaria. Umaltolepis and Vladimaria do not closely resemble the seed-bearing structures of any living or extinct plant, but are comparable in some respects to those of certain Peltaspermales and Umkomasiales (corystosperms). Vegetative similarities of the Umaltolepis plant to Ginkgo, and reproductive similarities to extinct peltasperms and corystosperms, support previous ideas that Ginkgo may be the last survivor of a once highly diverse group of extinct plants, several of which exhibited various degrees of ovule enclosure.


Assuntos
Ginkgo biloba/anatomia & histologia , Plantas/anatomia & histologia , Sementes/anatomia & histologia , Fósseis/anatomia & histologia , Ginkgo biloba/classificação , Plantas/classificação , Sementes/classificação
8.
Am J Bot ; 104(9): 1370-1381, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-29885232

RESUMO

PREMISE OF THE STUDY: Hymenophyllaceae ("filmy ferns") are a widely distributed group of predominantly tropical, epiphytic ferns that also include some temperate and terrestrial species. Hymenophyllaceae are one of the earliest-diverging lineages within leptosporangiate ferns, but their fossil record is sparse, most likely because of their low fossilization potential and commonly poor preservation of their delicate, membranaceous fronds. A new species of unequivocal fossil Hymenophyllaceae, Hymenophyllum iwatsukii sp. nov., is described from the Early Cretaceous of Mongolia based on abundant and exceptionally well-preserved material. METHODS: Bulk lignite samples collected from Tevshiin Govi and Tugrug localities in Mongolia, were disaggregated in water, cleaned with hydrochloric and hydrofluoric acids, washed, and dried in air. Fossils were examined and compared to material of extant Hymenophyllaceae using LM and SEM. KEY RESULTS: The fossil fern specimens are assigned to the Hymenophyllaceae based on their membranaceous laminae with marginal sori that have sessile to short-stalked sporangia with oblique, complete annuli, and trilete, tetrahedral-globose spores. Within the family, the fossil material is assigned to the extant genus Hymenophyllum on the basis of bivalvate indusia and short, included receptacles. CONCLUSIONS: Hymenophyllum iwatsukii was likely an epiphyte based on the sedimentary environment in which the fossils are preserved, the associated fossil flora, and the growth habit of extant species of Hymenophyllum. The new fossil species underlines the extent to which morphological characters in Hymenophyllum have been conserved despite significant tectonic, climatic, ecological, and floristic changes since the Early Cretaceous.


Assuntos
Gleiquênias/ultraestrutura , Fósseis/anatomia & histologia
9.
New Phytol ; 210(4): 1418-29, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26840646

RESUMO

Corystosperms, a key extinct group of Late Permian to Early Cretaceous plants, are important for understanding seed plant phylogeny, including the evolution of the angiosperm carpel and anatropous bitegmic ovule. Here, we describe a new species of corystosperm seed-bearing organ, Umkomasia mongolica sp. nov., based on hundreds of three-dimensionally preserved mesofossils from the Early Cretaceous of Mongolia. Individual seed-bearing units of U. mongolica consist of a bract subtending an axis that bifurcates, with each fork (cupule stalk) bearing a cupule near the tip. Each cupule is formed by the strongly reflexed cupule stalk and two lateral flaps that partially enclose an erect seed. The seed is borne at, or close to, the tip of the reflexed cupule stalk, with the micropyle oriented towards the stalk base. The corystosperm cupule is generally interpreted as a modified leaf that bears a seed on its abaxial surface. However, U. mongolica suggests that an earlier interpretation, in which the seed is borne directly on an axis (shoot), is equally likely. The 'axial' interpretation suggests a possible relationship of corystosperms to Ginkgo. It also suggests that the cupules of corystosperms may be less distinct from those of Caytonia than has previously been supposed.


Assuntos
Gleiquênias/anatomia & histologia , Fósseis/anatomia & histologia , Mongólia , Óvulo Vegetal/anatomia & histologia , Folhas de Planta/anatomia & histologia , Sementes/anatomia & histologia
10.
Am J Bot ; 100(12): 2426-36, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24285570

RESUMO

PREMISE OF THE STUDY: Seed cone scales assigned to the genus Schizolepidopsis are widespread in Late Triassic to Cretaceous Eurasian deposits. They have been linked to the conifer family Pinaceae based on associated vegetative remains, but their exact affinities are uncertain. Recently discovered material from the Early Cretaceous of Mongolia reveals important new information concerning Schizolepidopsis cone scales and seeds, and provides support for a relationship between the genus and extant Pinaceae. METHODS: Specimens were collected from Early Cretaceous (probable Aptian-Albian) lignite deposits in central Mongolia. Lignite samples were disaggregated, cleaned in hydrofluoric acid, and washed in water. Specimens were selected for further study using light and electron microscopy. KEY RESULTS: Schizolepidopsis canicularis seed cones consist of loosely arranged, bilobed ovulate scales subtended by a small bract. A single inverted seed with an elongate micropyle is borne on each lobe of the ovulate scale. Each seed has a wing formed by the separation of the adaxial surface of the ovulate scale. CONCLUSIONS: Schizolepidopsis canicularis produced winged seeds that formed in a manner that is unique to Pinaceae among extant conifers. We do not definitively place this species in Pinaceae pending more complete information concerning its pollen cones and vegetative remains. Nevertheless, this material suggests that Schizolepidopsis may be important for understanding the early evolution of Pinaceae, and may potentially help reconcile the appearance of the family in the fossil record with results based on phylogenetic analyses of molecular data.


Assuntos
Evolução Biológica , Fósseis , Pinaceae/genética , Pólen , Sementes/anatomia & histologia , Traqueófitas/genética , Mongólia , Filogenia , Pinaceae/anatomia & histologia , Pinaceae/fisiologia , Reprodução , Traqueófitas/anatomia & histologia , Traqueófitas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA