Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Sci J ; 94(1): e13883, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37909231

RESUMO

We collected 3180 records of oleic acid (C18:1) and monounsaturated fatty acid (MUFA) measured using gas chromatography (GC) and 6960 records of C18:1 and MUFA measured using near-infrared spectroscopy (NIRS) in intermuscular fat samples of Japanese Black cattle. We compared genomic prediction performance for four linear models (genomic best linear unbiased prediction [GBLUP], kinship-adjusted multiple loci [KAML], BayesC, and BayesLASSO) and five machine learning models (Gaussian kernel [GK], deep kernel [DK], random forest [RF], extreme gradient boost [XGB], and convolutional neural network [CNN]). For GC-based C18:1 and MUFA, KAML showed the highest accuracies, followed by BayesC, XGB, DK, GK, and BayesLASSO, with more than 6% gain of accuracy by KAML over GBLUP. Meanwhile, DK had the highest prediction accuracy for NIRS-based C18:1 and MUFA, but the difference in accuracies between DK and KAML was slight. For all traits, accuracies of RF and CNN were lower than those of GBLUP. The KAML extends GBLUP methods, of which marker effects are weighted, and involves only additive genetic effects; whereas machine learning methods capture non-additive genetic effects. Thus, KAML is the most suitable method for breeding of fatty acid composition in Japanese Black cattle.


Assuntos
Ácidos Graxos , Genoma , Bovinos/genética , Animais , Genômica/métodos , Fenótipo , Aprendizado de Máquina , Ácidos Graxos Monoinsaturados , Modelos Genéticos , Genótipo , Polimorfismo de Nucleotídeo Único
2.
BMC Genomics ; 24(1): 376, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37403068

RESUMO

BACKGROUND: Pedigree-based inbreeding coefficients have been generally included in statistical models for genetic evaluation of Japanese Black cattle. The use of genomic data is expected to provide precise assessment of inbreeding level and depression. Recently, many measures have been used for genome-based inbreeding coefficients; however, with no consensus on which is the most appropriate. Therefore, we compared the pedigree- ([Formula: see text]) and multiple genome-based inbreeding coefficients, which were calculated from the genomic relationship matrix with observed allele frequencies ([Formula: see text]), correlation between uniting gametes ([Formula: see text]), the observed vs expected number of homozygous genotypes ([Formula: see text]), runs of homozygosity (ROH) segments ([Formula: see text]) and heterozygosity by descent segments ([Formula: see text]). We quantified inbreeding depression from estimating regression coefficients of inbreeding coefficients on three reproductive traits: age at first calving (AFC), calving difficulty (CD) and gestation length (GL) in Japanese Black cattle. RESULTS: The highest correlations with [Formula: see text] were for [Formula: see text] (0.86) and [Formula: see text] (0.85) whereas [Formula: see text] and [Formula: see text] provided weak correlations with [Formula: see text], with range 0.33-0.55. Except for [Formula: see text] and [Formula: see text], there were strong correlations among genome-based inbreeding coefficients ([Formula: see text] 0.94). The estimates of regression coefficients of inbreeding depression for [Formula: see text] was 2.1 for AFC, 0.63 for CD and -1.21 for GL, respectively, but [Formula: see text] had no significant effects on all traits. Genome-based inbreeding coefficients provided larger effects on all reproductive traits than [Formula: see text]. In particular, for CD, all estimated regression coefficients for genome-based inbreeding coefficients were significant, and for GL, that for [Formula: see text] had a significant.. Although there were no significant effects when using overall genome-level inbreeding coefficients for AFC and GL, [Formula: see text] provided significant effects at chromosomal level in four chromosomes for AFC, three chromosomes for CD, and two chromosomes for GL. In addition, similar results were obtained for [Formula: see text]. CONCLUSIONS: Genome-based inbreeding coefficients can capture more phenotypic variation than [Formula: see text]. In particular, [Formula: see text] and [Formula: see text] can be considered good estimators for quantifying inbreeding level and identifying inbreeding depression at the chromosome level. These findings might improve the quantification of inbreeding and breeding programs using genome-based inbreeding coefficients.


Assuntos
Depressão por Endogamia , Endogamia , Animais , Bovinos/genética , Linhagem , Polimorfismo de Nucleotídeo Único , Genótipo , Genômica/métodos , Homozigoto
3.
Anim Sci J ; 94(1): e13850, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37443446

RESUMO

We examined the prediction accuracies of genomic best linear unbiased prediction (GBLUP), various weighted GBLUP according to the degrees of marker effects (WGBLUP) and machine learning (ML) methods, and compared them with traditional BLUP for age at first calving (AFC), calving difficulty (CD), and gestation length in Japanese Black cattle. For WGBLUP, firstly, BayesC and FarmCPU were used to estimate marker effects. Then, we constructed three weighted genomic relationship matrices from information of estimated marker effects in the first step: absolute value of the estimated marker-effect WGBLUP, estimated marker-variance WGBLUP, and genomic-feature WGBLUP. For ML, we applied Gaussian kernel, random forest, extreme gradient boost, and support vector regression. We collected a total of 2583 animals having both phenotypic records and genotypes with 30,105 markers and 16,406 pedigree records. For AFC, prediction accuracies of WGBLUP methods using FarmCPU exceeded BLUP by 25.7%-39.5%. For CD, estimated marker-variance WGBLUP using BayesC achieved the highest prediction accuracy. Among ML methods, extreme gradient boost, support vector regression, and Gaussian kernel increased prediction accuracies by 28.4%, 19.0%, and 36.4% for AFC, CD, and gestation length compared with BLUP, respectively. Thus, prediction performance could be improved using suitable WGBLUP and ML methods according to target reproductive traits for the population used.


Assuntos
Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Bovinos/genética , Animais , Polimorfismo de Nucleotídeo Único/genética , Genoma , Genômica/métodos , Fenótipo , Genótipo , Linhagem
4.
Anim Sci J ; 94(1): e13827, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992553

RESUMO

Closed-pig line breeding could change the genetic structure at a genome-wide scale because of the selection in a pig breeding population. We investigated the changes in population structure among generations at a genome-wide scale and the selected loci across the genome by comparing the observed and expected allele frequency changes in mycoplasma pneumonia of swine (MPS)-selected pigs. Eight hundred and seventy-four Landrace pigs, selected for MPS resistance without reducing average daily gain over five generations, had 37,299 single nucleotide polymorphisms (SNPs) and were used for genomic analyses. Regarding population structure, individuals in the first generation were the most widely distributed and then converged into a specific group, as they were selected over five generations. For allele frequency changes, 96 and 14 SNPs had higher allele frequency changes than the 99.9% and 99.99% thresholds of the expected changes, respectively. These SNPs were evenly spread across the genome, and a few of these selected regions overlapped with previously detected quantitative trait loci for MPS and immune-related traits. Our results indicated that the considerable changes in allele frequency were identified in many regions across the genome by closed-pig line breeding based on estimated breeding value.


Assuntos
Pneumonia Suína Micoplasmática , Doenças dos Suínos , Suínos/genética , Animais , Pneumonia Suína Micoplasmática/genética , Frequência do Gene/genética , Locos de Características Quantitativas/genética , Genômica , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Estudo de Associação Genômica Ampla/veterinária
5.
Sci Rep ; 11(1): 15823, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349215

RESUMO

Identification of a quantitative trait locus (QTL) related to a chronic respiratory disease such as Mycoplasmal pneumonia of swine (MPS) and immune-related traits is important for the genetic improvement of disease resistance in pigs. The objective of this study was to detect a novel QTL for a total of 22 production, respiratory disease, and immune-related traits in Landrace pigs. A total of 874 Landrace purebred pigs, which were selected based on MPS resistance, were genotyped using the Illumina PorcineSNP60 BeadChip. We performed single nucleotide polymorphism (SNP)-based and haplotype-based genome-wide association studies (GWAS) to detect a novel QTL and to evaluate the possibility of a pleiotropic QTL for these traits. SNP-based GWAS detected a total of six significant regions in backfat thickness, ratio of granular leucocytes to lymphatic cells, plasma concentration of cortisol at different ages, and complement alternative pathway activity in serum. The significant region detected by haplotype-based GWAS was overlapped across the region detected by SNP-based GWAS. Most of these detected QTL regions were novel regions with some candidate genes located in them. With regard to a pleiotropic QTL among traits, only three of these detected QTL regions overlapped among traits, and many detected regions independently affected the traits.


Assuntos
Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Sistema Imunitário/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Reprodução , Doenças Respiratórias/genética , Animais , Haplótipos , Fenótipo , Doenças Respiratórias/patologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...