Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 630, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679672

RESUMO

Fibroblast Growth Factor 21 (FGF21) elicits an array of metabolic effects. However, the physiological role of FGF21 during thermal challenges is not clear. In this study, we assessed the tissue source of FGF21 and its site of action to regulate core body temperature in response to cold. Using mice lacking FGF21 specifically in the liver (FGF21 LivKO) or adipose tissues (FGF21 AdipoKO), we performed a series of cold exposure studies to examine the tissue specific induction of FGF21 in response to cold. We also examined the physiological site of FGF21 action during cold exposure by impairing FGF21 signaling to adipose tissues or the central nervous system (CNS) using genetic ablation of the FGF21 co-receptor ß-klotho in adipose tissues (KLB AdipoKO) or pharmacological blockage of FGF21 signaling. We found that only liver-derived FGF21 enters circulation during acute cold exposure and is critical for thermoregulation. While FGF21 signaling directly to adipose tissues during cold is dispensable for thermoregulation, central FGF21 signaling is necessary for maximal sympathetic drive to brown adipose tissue to maintain thermoregulation during cold. These data demonstrate a previously unrecognized role for FGF21 in the maintenance of body temperature in response to cold.


Assuntos
Temperatura Corporal/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Fígado/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Temperatura Baixa , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiologia
2.
JCI Insight ; 3(5)2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29515030

RESUMO

Neuregulins (NRGs) are emerging as an important family of signaling ligands that regulate glucose and lipid homeostasis. NRG1 lowers blood glucose levels in obese mice, whereas the brown fat-enriched secreted factor NRG4 protects mice from high-fat diet-induced insulin resistance and hepatic steatosis. However, the therapeutic potential of NRGs remains elusive, given the poor plasma half-life of the native ligands. Here, we engineered a fusion protein using human NRG1 and the Fc domain of human IgG1 (NRG1-Fc) that exhibited extended half-life in circulation and improved potency in receptor signaling. We evaluated its efficacy in improving metabolic parameters and dissected the mechanisms of action. NRG1-Fc treatment triggered potent AKT activation in the liver, lowered blood glucose, improved insulin sensitivity, and suppressed food intake in obese mice. NRG1-Fc acted as a potent secretagogue for the metabolic hormone FGF21; however, the latter was largely dispensable for its metabolic effects. NRG1-Fc directly targeted the hypothalamic POMC neurons to promote membrane depolarization and increase firing rate. Together, NRG1-Fc exhibits improved pharmacokinetic properties and exerts metabolic benefits through dual inhibition of hepatic gluconeogenesis and caloric intake.


Assuntos
Ingestão de Energia/efeitos dos fármacos , Fígado Gorduroso/tratamento farmacológico , Gluconeogênese/efeitos dos fármacos , Neuregulina-1/administração & dosagem , Obesidade/tratamento farmacológico , Proteínas Recombinantes de Fusão/administração & dosagem , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Meia-Vida , Humanos , Fragmentos Fc das Imunoglobulinas/administração & dosagem , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/administração & dosagem , Imunoglobulina G/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Neuregulina-1/genética , Neuregulina-1/farmacocinética , Obesidade/etiologia , Obesidade/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacocinética , Resultado do Tratamento
3.
Sci Rep ; 8(1): 523, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323267

RESUMO

Adipose tissue dysfunction is critical to the development of type II diabetes and other metabolic diseases. While monolayer cell culture has been useful for studying fat biology, 2D culture often does not reflect the complexity of fat tissue. Animal models are also problematic in that they are expensive, time consuming, and may not completely recapitulate human biology because of species variation. To address these problems, we have developed a scaffold-free method to generate 3D adipose spheroids from primary or immortal human or mouse pre-adipocytes. Pre-adipocytes self-organize into spheroids in hanging drops and upon transfer to low attachment plates, can be maintained in long-term cultures. Upon exposure to differentiation cues, the cells mature into adipocytes, accumulating large lipid droplets that expand with time. The 3D spheroids express and secrete higher levels of adiponectin compared to 2D culture and respond to stress, either culture-related or toxin-associated, by secreting pro-inflammatory adipokines. In addition, 3D spheroids derived from brown adipose tissue (BAT) retain expression of BAT markers better than 2D cultures derived from the same tissue. Thus, this model can be used to study both the maturation of pre-adipocytes or the function of mature adipocytes in a 3D culture environment.


Assuntos
Adipócitos/metabolismo , Descoberta de Drogas , Esferoides Celulares/metabolismo , Adipócitos/citologia , Adipocinas/metabolismo , Adiponectina/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Humanos , Gotículas Lipídicas/metabolismo , Camundongos , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Toxinas Biológicas/farmacologia , Regulação para Cima/efeitos dos fármacos
4.
Cell Metab ; 25(4): 935-944.e4, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28380381

RESUMO

FGF21 is an endocrine hormone that regulates energy homeostasis and insulin sensitivity. The mechanism of FGF21 action and the tissues responsible for these effects have been controversial, with both adipose tissues and the central nervous system having been identified as the target site mediating FGF21-dependent increases in insulin sensitivity, energy expenditure, and weight loss. Here we show that, while FGF21 signaling to adipose tissue is required for the acute insulin-sensitizing effects of FGF21, FGF21 signaling to adipose tissue is not required for its chronic effects to increase energy expenditure and lower body weight. Also, in contrast to previous studies, we found that adiponectin is dispensable for the metabolic effects of FGF21 in increasing insulin sensitivity and energy expenditure. Instead, FGF21 acutely enhances insulin sensitivity through actions on brown adipose tissue. Our data reveal that the acute and chronic effects of FGF21 can be dissociated through adipose-dependent and -independent mechanisms.


Assuntos
Tecido Adiposo/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Adipócitos Marrons/metabolismo , Adiponectina/metabolismo , Animais , Metabolismo Energético , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Redução de Peso
5.
J Inorg Biochem ; 138: 24-30, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24857804

RESUMO

Peroxynitrite has been shown to play a critical role in inflammation and affords 3-nitrotyrosine as the hallmark product. The reported methods of generating this reactive nitrogen species in situ often fails to provide a high and steady flux of peroxynitrite resulting in poor yields of 3-nitrotyrosine. Herein we report a two-component peroxynitrite-generating platform in which this anion is produced in a biomimetic fashion and under the control of visible light. Incorporation of the nitric oxide- and superoxide-generating components in polymer matrices allows easy alterations of pH in the reaction wells of this platform. We have demonstrated very efficient nitration of tyrosine by peroxynitrite at different pH values and with varying concentrations of carbonate. In addition to tyrosine, a set of tyrosine-containing peptides was also studied. Presence of glutathione in the reaction wells increases the extent of tyrosine nitration in such peptide substrates presumably by raising the lifetime of nitric oxide in the reaction medium. When a cysteine residue was included in the sequence of the peptide, the extent of nitration of the tyrosine residue was found to depend on the position of the cysteine residue with respect to tyrosine. The extent of tyrosine nitration is strongly attenuated when the cysteine residue is directly adjacent to the tyrosine. This effect has been attributed to an intramolecular radical transfer mechanism. Taken together, results of this study demonstrate the potential of this light-controlled platform as a convenient bioanalytical tool in studying the reactions of peroxynitrite under widely varying conditions.


Assuntos
Ácido Peroxinitroso/química , Compostos de Sulfidrila/química , Tirosina/análogos & derivados , Tirosina/química , Dióxido de Carbono/química , Glutationa/química , Concentração de Íons de Hidrogênio , Luz , Tirosina/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA