Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 121(33): 7833-7843, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28742964

RESUMO

We studied the hydrodynamic behavior of fibrinogen, a blood plasma protein involved in blood clotting, in a broad 0.3-60 mg/mL range of concentration and 5-42 °C temperature using pulsed-field gradient 1H NMR-diffusometry. Arrhenius plots revealed the activation energy for fibrinogen diffusion Ed = 21.3 kJ/mol at 1.4 mg/mL and 28.4 kJ/mol at 38 mg/mL. We found a dramatic slowdown in fibrinogen self-diffusion with concentration beginning at 1.7-3.4 mg/mL, which deviated from the standard hard-particle behavior, suggesting a remarkable intermolecular entanglement. This concentration dependence was observed regardless of the absence or presence of the GPRP peptide (inhibitor of fibrin polymerization), and also in samples free of fibrin oligomers. By contrast, diffusivity of fibrinogen variant I-9 with truncated C-terminal portions of the Aα chains was much less concentration-dependent, indicating the importance of intermolecular linkages formed by the αC regions. Theoretical models combined with all-atom molecular dynamics simulations revealed partially bent fibrinogen solution conformations that interpolate between a flexible chain and a rigid rod observed in the crystal. The results obtained illuminate the important role of the αC regions in modulating the fibrinogen molecular shape through formation of weak intermolecular linkages that control the bulk properties of fibrinogen solutions.


Assuntos
Fibrinogênio/química , Humanos , Hidrodinâmica , Modelos Moleculares , Maleabilidade , Conformação Proteica , Soluções/química
2.
Carbohydr Polym ; 171: 143-151, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28578948

RESUMO

The article presents the structural principles of microwave-induced formation of new gel type from pectic rhamnogalacturonan I (RG-I). The backbone of gel-forming RG-I does not contain consecutive galacturonic residues and modifying groups that can be the cause of junction zone formation as it occurs in course of classical ways of pectin gelation. Microwave irradiation does not cause destruction and chemical modifications of RG-I. Removal of half of galactan chains from RG-I leads to loss of gelling capability pointing out on their leading role in this process. Rising of intensity of the bands attributed to galactose and glycosidic linkages in RG-I gel comparing to solution where this polymer exists as molecule associate indicates that the spatial organization of galactans in gel is changed. A model of the RG-I gelation is proposed: being destabilized at volumetric microwave heating RG-I associates are repacked forming network where RG-I molecules are entangled by galactan chains.


Assuntos
Galactanos/química , Géis/química , Pectinas/química , Galactose/metabolismo , Micro-Ondas
3.
Int J Biol Macromol ; 84: 142-52, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26687241

RESUMO

Defensins are part of the innate immune system in plants with activity against a broad range of pathogens, including bacteria, fungi and viruses. Several defensins from conifers, including Scots pine defensin 1 (Pinus sylvestris defensin 1, (PsDef1)) have shown a strong antifungal activity, however structural and physico-chemical properties of the family, needed for establishing the structure-dynamics-function relationships, remain poorly characterized. We use several spectroscopic and computational methods to characterize the structure, dynamics, and oligomeric state of PsDef1. The three-dimensional structure was modeled by comparative modeling using several programs (Geno3D, SWISS-MODEL, I-TASSER, Phyre(2), and FUGUE) and verified by circular dichroism (CD) and infrared (FTIR) spectroscopy. Furthermore, FTIR data indicates that the structure of PsDef1 is highly resistant to high temperatures. NMR diffusion experiments show that defensin exists in solution in the equilibrium between monomers and dimers. Four types of dimers were constructed using the HADDOCK program and compared to the known dimer structures of other plant defensins. Gaussian network model was used to characterize the internal dynamics of PsDef1 in monomer and dimer states. PsDef1 is a typical representative of P. sylvestris defensins and hence the results of this study are applicable to other members of the family.


Assuntos
Defensinas/química , Modelos Moleculares , Pinus sylvestris/química , Proteínas de Plantas/química , Conformação Proteica , Sequência de Aminoácidos , Dicroísmo Circular , Dados de Sequência Molecular , Matrizes de Pontuação de Posição Específica , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Espectroscopia de Prótons por Ressonância Magnética , Proteínas Recombinantes , Alinhamento de Sequência , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Carbohydr Polym ; 117: 853-861, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25498709

RESUMO

The physicochemical properties of flax fiber cell wall rhamnogalacturonan I (RG-I) and its fragments, obtained after galactanase treatment (fraction G1), were characterized. RG-I retains its hydrodynamic volume after its molecular weight decreases by approximately half, as revealed by SEC. Two techniques, DLS and NMR, with different principles of diffusion experiment were used to establish the reasons for this property of RG-I. Three possible types of particles were revealed by DLS depending on the concentration of the RG-I and G1 solutions (2-2.5, 15-20, and 150-200 nm). It was determined by BPP-LED experiments that the backbone of the RG-I was 1.3-1.9-fold more mobile than the side chains. The obtained data suggest a novel type of pectin spatial organization-the formation of RG-I associates with the backbone at the periphery and the interaction between the side chains to form a core zone.


Assuntos
Parede Celular/química , Linho/citologia , Gelatina/metabolismo , Pectinas/química , Sequência de Carboidratos , Galactose/química , Hidrodinâmica , Dados de Sequência Molecular , Pectinas/metabolismo , beta-Galactosidase/metabolismo
5.
J Colloid Interface Sci ; 405: 125-33, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23777861

RESUMO

Novel biomimetic systems are designed based on cationic surfactants composed of an isosteviol moiety and different counterions, namely bromide (S1) and tosylate (S2). The counterion structure is shown to play a crucial role in the surfactant association. A number of methods used provide evidence that only one type of aggregate, i.e., micelles are observed in the S2 systems, while a concentration-dependent association occurs in the case of S1. The DLS and fluorescence anisotropy measurements reveal that the micelle-vesicle-micelle transitions probably occur with the S1 system. The occurrence of small aggregates near the critical micelle concentration with radii of 2.5 nm is supported by NMR self-diffusion data. The Orange OT solubilization results strongly support the idea of a second threshold in the S1 system around 0.025 mM and provide evidence that hydrophobic domains occur in the aggregates. The latter property and the capacity to integrate with the lipid bilayer make it possible to suggest the newly synthesized surfactants as effective nanocontainers for hydrophobic guests.


Assuntos
Biomimética , Bicamadas Lipídicas , Micelas , Tensoativos/química , Terpenos/química , Anisotropia , Difusão , Interações Hidrofóbicas e Hidrofílicas , Íons , Luz , Espectroscopia de Ressonância Magnética , Espalhamento de Radiação , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...