Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioinform Adv ; 3(1): vbad131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810456

RESUMO

Motivation: Tilt-series cryo-electron tomography is a powerful tool widely used in structural biology to study 3D structures of micro-organisms, macromolecular complexes, etc. Still, the reconstruction process remains an arduous task due to several challenges: The missing-wedge acquisition, sample misalignment and motion, the need to process large data, and, especially, a low signal-to-noise ratio. Results: Inspired by the recently introduced neural representations, we propose an adaptive learning-based representation of the density field of the captured sample. This representation consists of an octree structure, where each node represents a 3D density grid optimized from the captured projections during the training process. This optimization is performed using a loss that combines a differentiable image formation model with different regularization terms: total variation, boundary consistency, and a cross-nodes non-local constraint. The final reconstruction is obtained by interpolating the learned density grid at the desired voxel positions. The evaluation of our approach using captured data of viruses and cells shows that our proposed representation is well adapted to handle missing wedges, and improves the signal-to-noise ratio of the reconstructed tomogram. The reconstruction quality is highly improved in comparison to the state-of-the-art methods, while using the lowest computing time footprint. Availability and implementation: The code is available on Github at https://github.com/yuanhaowang1213/adaptivediffgrid_ex.

2.
Biomed Opt Express ; 8(9): 3903-3917, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29026678

RESUMO

Optical coherence tomography (OCT) is a non-invasive technique with a large array of applications in clinical imaging and biological tissue visualization. However, the presence of speckle noise affects the analysis of OCT images and their diagnostic utility. In this article, we introduce a new OCT denoising algorithm. The proposed method is founded on a numerical optimization framework based on maximum-a-posteriori estimate of the noise-free OCT image. It combines a novel speckle noise model, derived from local statistics of empirical spectral domain OCT (SD-OCT) data, with a Huber variant of total variation regularization for edge preservation. The proposed approach exhibits satisfying results in terms of speckle noise reduction as well as edge preservation, at reduced computational cost.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA