Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 8(8): e10057, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35991987

RESUMO

This study introduces a novel and simple way to suppress the self-absorption effect in laser-induced breakdown spectroscopy (LIBS) by utilizing a defocusing laser irradiation technique. For this purpose, a Nd:YAG laser with a wavelength of 1,064 nm and repetition rate of 10 Hz with energy in the range of 10 mJ-50 mJ was used. The laser irradiation was focused by using a 150-mm-focal-length plano-convex lens onto the sample surface under defocusing of approximately -6 mm. Potassium chloride (KCl) and sodium chloride (NaCl) pellet samples were used to demonstrate this achievement. When the defocus position is adjusted to -6 mm for KCl and NaCl samples, the self-reversal in the emission lines of K I 766.4 nm, K I 769.9 nm, Na I 588.9 nm, and Na I 589.5 nm vanish. Meanwhile, the FWHM values of K I 766.4 and K I 769.9 nm are 0.29 nm and 0.23 nm, respectively, during -6 mm defocus laser irradiation, as opposed to 1.24 nm and 0.86 nm under tight focus laser irradiation. Additionally, this work demonstrates that, when the laser energy is changed between 10 and 50 mJ, no self-reversal occurs in the emission lines when -6 mm defocus laser irradiation is applied. Finally, a linear calibration curve was generated using KCl at a high concentration ranging between K concentrations from 16.6% to 29%. It should be noted that, even at such high K concentrations, the calibration curve is still linear. This means that self-absorption is almost negligible. This simple change in defocus laser irradiation will undoubtedly contribute to the suppression of the self-absorption phenomenon, which disrupts LIBS analytical results.

2.
Sci Rep ; 11(1): 21999, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34754063

RESUMO

High-sensitivity detection of hydrogen (H) contained in zircaloy-4, a commonly used material for nuclear fuel containers, is crucial in a nuclear power plant. Currently, H detection is performed via gas chromatography, which is an offline and destructive method. In this study, we developed a technique based on metastable excited-state He-assisted excitation to achieve excellent quality of H emission spectra in double-pulse orthogonal laser-induced breakdown spectroscopy (LIBS). The production of metastable excited-state He atoms is optimized by using LiF as sub-target material. The results show a narrow full-width-at-half-maximum of 0.5 Å for the H I 656.2 nm emission line, with a detection limit as low as 0.51 mg/kg. Thus, using this novel online method, H in zircaloy-4 can be detected efficiently, even at very low concentrations.

3.
Heliyon ; 6(12): e05711, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33364488

RESUMO

Laser induced breakdown is a highly temporally and spatially dynamic phenomenon, normally studied using a highly temporally resolved optical detector system. In this work, a compact, low cost optical multichannel analyzer (OMA) system without a built-in temporal gating device and thus operated under a free running mode was used to investigate the characteristics of laser induced plasma. A Nd-YAG laser beam was used as the excitation source from several samples, namely, copper, zinc, and aluminum plates. The characteristics of the plasma emission produced under various experimental parameters, including the pulse energy, surrounding gas pressure, and collection fiber position, were examined. It was found that the essential features of emission spectra can be investigated even using the ungated, compact OMA system even without a highly temporally resolved gating system. The plasma emission characteristics critically depend on the experimental parameters. A quality emission spectrum, featuring a high intensity with a low background, can be obtained using the ungated, compact OMA system under optimized conditions, namely, a pulse energy of approximately 8 mJ, a surrounding gas pressure of 10 Torr, and a collection fiber position of more than 5 mm above the surface of the sample. The features of the emission spectra detected under optimized conditions are only similar to those obtained using a sophisticated, gated OMA system. The characteristics of the emission spectra are in good agreement with the previous assumption of the shockwave role in plasma excitation. Having quality emission spectra under the optimized conditions, a preliminary practical laser induced breakdown spectroscopy (LIBS) analysis using the ungated, compact OMA system was performed on several samples, such as standard brass, commercial pure gold, and natural stone samples. The aluminum emission lines are strongly detected from the standard brass sample (C1118) containing aluminum at 2.8%. The LIBS system also unequivocally revealed a qualitatively abandoned impurity presence in the purportedly pure commercial gold sample. It also effectively confirmed qualitatively a Cu presence in the blinking spots of the natural stone collected from a traditional mining site in Aceh. This result implies the effectiveness of the LIBS using the ungated, compact OMA system for quick, practical analysis.

4.
ACS Omega ; 5(27): 16811-16818, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32685849

RESUMO

Laser-induced breakdown spectroscopy (LIBS) to detect the light elements such as lithium (Li) and boron (B) and heavy elements such as copper (Cu) and lead (Pb) in raw fish samples is reported in this work. This is made possible by understanding that the soft target absorbs recoil energy and as a result, the ablated atoms gushing from the soft target do not acquire sufficient speed to form a shock wave. In order to overcome this problem, we set a subtarget on the back of the soft target so as to produce the repulsion force by which the gushing speed of the ablated atoms is increased, yielding a sufficiently high plasma temperature or sufficiently large thermal energy needed for the excitation of the ablated atoms. Excellent spectral qualities of various soft samples such as margarine, butter, peanut butter, strawberry jam, raw tuna, raw gindara, and raw salmon are presented. Furthermore, a linear calibration curve with a zero intercept is also obtained for Li, Cu, and Pb. The detection limit of Li, Cu, and Pb is found to be around 0.1 mg/L. This modification of LIBS for soft samples by using a subtarget effect clearly promises a rapid and in situ soft sample analysis since there is practically no sample digestion in the analysis.

5.
Anal Chem ; 91(12): 7864-7870, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31132266

RESUMO

This study is aimed at elucidating the physical processes responsible for the excellent spectral qualities in terms of full width at half-maximum (fwhm) and signal-to-noise (S/N) ratio shown in a special double pulse laser-induced spectroscopy. Apart from the use of atmospheric He ambient gas, the achievement is due to the first laser for generating He gas plasma and the subsequent use of the second laser pulse for target ablation, in opposite order of the two-laser operations in conventional double pulse LIBS. This setup allows adjustments of the many experimental parameters to yield the optimal condition resulting in 0.03 nm fwhm and around 1000× S/N ratio of Cu I 521.8 nm and far surpasses the spectral qualities obtained by other techniques. This is obtained by allowing the crucial separation of the target plasma from the He gas plasma and thereby enabling the He-assisted excitation (HAE) to play its full and unique role of nonthermal excitation, taking advantage of metastable excited He atoms in the He plasma and the Penning-like energy transfer process. This excellent performance is further verified by its successful application analysis of Cr in low alloy steel samples, with the presence of smooth linear calibration lines, signifying the absence of the self-absorption effect well-known in ordinary LIBS.

6.
Appl Opt ; 55(7): 1731-7, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26974637

RESUMO

Presented in this paper are the results of an experimental study on the laser induced plasma emission of a number of CN free samples (urea, sucrose) with 40 mJ pulse energy using He and N2 ambient gases. It is shown that the CN emission has its exclusive sources in the molecules produced as the result of chemical bonding either between the ablated C and N ions in the He plasma or between the ablated C and dissociated N from the N2 ambient gas. The emission intensities in both cases are found to have the highest values at the low gas pressure of 2 kPa. The emission in He gas is shown to exhibit the typical characteristics related to a shockwave generated excitation mechanism. The experiments using He ambient gas further demonstrate the feasible laser-induced breakdown spectroscopy application to quantitative and sensitive N analysis of coal and promising application for practical in situ carbon dating of fossils.


Assuntos
Carbono/análise , Carvão Mineral/análise , Fósseis , Hélio/química , Lasers , Nitrogênio/análise , Gases em Plasma/química , Pressão , Espectrometria de Fluorescência , Fatores de Tempo , Ureia/química
7.
Appl Opt ; 54(25): 7592-7, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26368882

RESUMO

We have conducted an experimental study exploring the possible application of laser-induced breakdown spectroscopy (LIBS) for practical and highly sensitive detection of metal impurities in water. The spectrochemical measurements were carried out by means of a 355 nm Nd-YAG laser within N2 and He gas at atmospheric pressures as high as 2 kPa. The aqueous samples were prepared as thin films deposited on indium-tin oxide (ITO) glass by an electrolysis process. The resulting emission spectra suggest that concentrations at parts per billion levels may be achieved for a variety of metal impurities, and it is hence potentially feasible for rapid inspection of water quality in the semiconductor and pharmaceutical industries, as well as for cooling water inspection for possible leakage of radioactivity in nuclear power plants. In view of its relative simplicity, this LIBS equipment offers a practical and less costly alternative to the standard use of inductively coupled plasma-mass spectrometry (ICP-MS) for water samples, and its further potential for in situ and mobile applications.

8.
Appl Spectrosc ; 69(1): 115-23, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25506688

RESUMO

A systematic study has been performed on the spectral characteristics of the full spectrum of He emission lines and their time-dependent behaviors measured from the He gas plasmas generated by a nanosecond neodymium-doped yttrium aluminum garnet laser. It is shown that among the major emission lines observed, the triplet He(I) 587.6 nm emission line stands out as the most prominent and long-lasting line, associated with de-excitation of the metastable triplet (S = 1) excited state (1s(1) 3d(1)). The role of this metastable excited state is manifested in the intensity enhancement and prolonged life time of the Cu emission with narrow full width half-maximum, as demonstrated in an orthogonal double-pulse experiment using a picosecond laser for the target ablation and a nanosecond laser for the prior generation of the ambient He gas plasma. These desirable emission features are in dire contrast to the characteristics of emission spectra observed with N2 ambient gas having no metastable excited state, which exhibit an initial Stark broadening effect and rapid intensity diminution typical to thermal shock wave-induced emission. The aforementioned He metastable excited state is therefore responsible for the demonstrated favorable features. The advantage of using He ambient gas in the double-pulse setup is further confirmed by the emission spectra measured from a variety of samples. The results of this study have thus shown the potential of extending the existing laser-induced breakdown spectroscopy application to high-sensitivity and high-resolution spectrochemical analysis of wide-ranging samples with minimal destructive effect on the sample surface.

9.
Appl Spectrosc ; 67(11): 1285-95, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24160880

RESUMO

An experimental study has been performed on the pressure-dependent plasma emission intensities in Ar, He, and N2 surrounding gases with the plasma induced by either nanosecond (ns) or picosecond (ps) yttrium aluminum garnet laser. The study focused on emission lines of light elements such as H, C, O, and a moderately heavy element of Ca from an agate target. The result shows widely different pressure effects among the different emission lines, which further vary with the surrounding gases used and also with the different ablation laser employed. It was found that most of the maximum emission intensities can be achieved in Ar gas plasma generated by ps laser at low gas pressure of around 5 Torr. This experimental condition is particularly useful for spectrochemical analysis of light elements such as H, C, and O, which are known to suffer from intensity diminution at higher gas pressures. Further measurements of the spatial distribution and time profiles of the emission intensities of H I 656.2 nm and Ca II 396.8 nm reveal the similar role of shock wave excitation for the emission in both ns and ps laser-induced plasmas, while an additional early spike is observed in the plasma generated by the ps laser. The suggested preference of Ar surrounding gas and ps laser was further demonstrated by outperforming the ns laser in their applications to depth profiling of the H emission intensity and offering the prospect for the development of three-dimensional analysis of a light element such as H and C.

10.
Appl Spectrosc ; 62(12): 1344-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19094393

RESUMO

Taking advantage of the differences between the interactions of transversely excited atmospheric (TEA) CO(2) lasers with metal and with organic powder, a new technique for the direct analysis of food powder samples has been developed. In this technique, the powder samples were placed into a small hole with a diameter of 2 mm and a depth of 3 mm and covered by a metal mesh. The TEA CO(2) laser (1500 mJ, 200 ns) was focused on the powder sample surfaces, passing through the metal mesh, at atmospheric pressure in nitrogen gas. It is hypothesized that the small hole functions to confine the powder particles and suppresses the blowing-off of sample, while the metal mesh works as the source of electrons to initiate the strong gas breakdown plasma. The confined powder particles are then ablated by laser irradiation and the ablated particles move into the strong gas breakdown plasma region to be atomized and excited; this method cannot be applied for the case of Nd:YAG lasers because in such case the metal mesh itself was ablated by the laser irradiation. A quantitative analysis of a milk powder sample containing different concentrations of Ca was successfully demonstrated, resulting in a good linear calibration curve with high precision.


Assuntos
Análise de Alimentos/métodos , Lasers , Avaliação Nutricional , Análise Espectral/métodos , Pressão Atmosférica , Dióxido de Carbono , Humanos , Oryza/química , Pós , Análise Espectral/instrumentação
11.
Appl Opt ; 46(34): 8298-304, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18059672

RESUMO

This experiment was carried out to address the need for overcoming the difficulties encountered in hydrogen analysis by means of plasma emission spectroscopy in atmospheric ambient gas. The result of this study on zircaloy-4 samples from a nuclear power plant demonstrates the possibility of attaining a very sharp emission line from impure hydrogen with a very low background and practical elimination of spectral contamination of hydrogen emission arising from surface water and water vapor in atmospheric ambient gas. This was achieved by employing ultrapure ambient helium gas as well as the proper defocusing of the laser irradiation and a large number of repeated precleaning laser shots at the same spot of the sample surface. Further adjustment of the gating time has led to significant reduction of spectral width and improvement of detection sensitivity to ~50 ppm. Finally, a linear calibration curve was also obtained for the zircaloy-4 samples with zero intercept. These results demonstrate the feasibility of this technique for practical in situ and quantitative analysis of hydrogen impurity in zircaloy-4 tubes used in a light water nuclear power plant.

12.
Anal Chem ; 79(7): 2703-7, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17341055

RESUMO

It is found in this work that variation of laser power density in low-pressure plasma spectrochemical analysis of hydrogen affects sensitively the hydrogen emission intensity from the unwanted and yet ubiquitous presence of ambient water. A special experimental setup has been devised to allow the simple condition of focusing/defocusing the laser beam on the sample surface. When applied to zircaloy-4 samples prepared with various hydrogen impurity concentrations using low-pressure helium surrounding gas, good-quality hydrogen emission lines of very high signal to background ratios were obtained with high reproducibility under weakly focused or largely defocused laser irradiation. These measurements resulted in a linear calibration line with nonzero intercept representing the residual contribution from the recalcitrant water molecules. It was further shown that this can be evaluated and taken into account by means of the measured intensity ratio between the oxygen and zirconium emission lines. We have demonstrated the applicability of this experimental approach for quantitative determination of hydrogen impurity concentrations in the samples considered.


Assuntos
Hidrogênio/análise , Lasers , Ressonância de Plasmônio de Superfície/métodos , Zircônio/química , Calibragem , Pressão , Sensibilidade e Especificidade , Ressonância de Plasmônio de Superfície/instrumentação , Propriedades de Superfície
13.
Appl Spectrosc ; 61(12): 1344-51, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18198027

RESUMO

A unique technique for direct analysis of soil samples utilizing a special advantage of a transversely excited atmospheric (TEA) CO(2) laser-induced plasma generated at atmospheric pressure on a metal target has been developed. In this technique, a metal subtarget, such as nickel plate, structured with intentional microholes on its surface, each with dimensions of around 100 microm in diameter and depth, was used to selectively trap small sized soil particles by immersing the metal plate subtarget into the polluted soil sample. The trapped small soil particles on the metal subtarget were irradiated by a TEA CO(2) laser (10.6 microm, 1.5 J, 200 ns) at atmospheric pressure under defocused condition with a spot size of 3 mm x 3 mm. This trapping and confining scheme substantially suppresses the blowing off effect; thus, the trapped soil particles can effectively be dissociated and atomized in the microstructured holes. Using this method of a microstructured metal plate subtarget, quantitative analysis was carried out on loam soil samples polluted by Pb. A linear calibration curve was obtained with a detection limit of approximately 50 mg/kg. Preliminary quantitative studies were carried out for a quartz sand sample containing Cr and Hg, resulting in linear calibration curves with detection limits of approximately 25 mg/kg and 10 mg/kg, respectively, at this stage. This technique is promising as a potential field screening tool for soil analysis.

14.
Appl Spectrosc ; 60(1): 61-4, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16454913

RESUMO

An experiment to investigate the potential of a laser-induced plasma method for determining concrete compressive strength was conducted by focusing a Nd:YAG laser on concrete samples with different degrees of compressive strength. This technique was developed in light of the role of the shock wave in the generation of a laser-induced plasma. It was found that the speed of the shock front depends on the hardness of the sample. It was also found that a positive relationship exists between the speed of the shock front and the ionization rate of the ablated atoms. Hence, the ratio of the intensity between the Ca(II) 396.8 nm and Ca(I) 422.6 nm emission lines detected from the laser-induced plasma can be used to examine the hardness of the material. In fact, it was observed that the ratio changes with respect to the change in the concrete compressive strength. The findings also show that the ratio increases with time after the cement is mixed with water.


Assuntos
Cálcio/análise , Materiais de Construção/análise , Gases/análise , Lasers , Teste de Materiais/métodos , Fotometria/métodos , Análise Espectral/métodos , Força Compressiva , Temperatura Alta
15.
Appl Spectrosc ; 59(1): 115-20, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15720746

RESUMO

Hydrogen emission has been studied in laser plasmas by focusing a TEA CO(2) laser (10.6 microm, 500 mJ, 200 ns) on various types of samples, such as glass, quartz, black plastic sheet, and oil on copper plate sub-target. It was found that H(alpha) emission with a narrow spectral width occurs with high efficiency when the laser plasma is produced in the low-pressure region. On the contrary, the conventional well-known laser-induced breakdown spectroscopy (LIBS), which is usually carried out at atmospheric air pressure, cannot be applied to the analysis of hydrogen as an impurity. By combining low-pressure laser-induced plasma spectroscopy with laser surface cleaning, a preliminary quantitative analysis was made on zircaloy pipe samples intentionally doped with hydrogen. As a result, a good linear relationship was obtained between H(alpha) emission intensity and its concentration.


Assuntos
Hidrogênio/análise , Lasers , Manufaturas/análise , Teste de Materiais/métodos , Análise Espectral/métodos , Zircônio/análise , Zircônio/química , Técnicas de Química Analítica/métodos , Pressão , Zircônio/efeitos da radiação
16.
Appl Spectrosc ; 58(8): 887-96, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18070383

RESUMO

It has been demonstrated that a spectrochemical analysis of carbon using the laser plasma method can be successfully applied to inspect the carbonation of concrete by detecting carbon produced in aged concrete by a chemical reaction of Ca(OH)2 with CO2 gas in environmental air, turning into CaCO3, which induces degradation of the quality of building concrete. A comparative study has been made using a TEA CO2 laser (500-1000 mJ) and a Q-switched Nd-YAG laser (50-200 mJ) to search for the optimum conditions for carbon analysis, proving the advantage of the TEA CO2 laser for this purpose. Also, it was clarified that laser irradiation with suitable defocusing conditions is a crucial point for obtaining high sensitivity in the detection of carbon. Practical experiments on the inspection of carbonation were carried out using both a concrete sample that had been intentionally carbonated by exposure to high concentrations of CO2 gas and a naturally carbonated concrete sample. As a result, good coincidence was observed between the laser method and the ordinary method, which uses the chemical indicator phenolphthalein, implying that this laser technique is applicable as an in situ quantitative method of inspection for carbonation of concrete.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA