Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(23): e202203956, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36645202

RESUMO

The interaction of CaO and Ca(OH)2 with solvated or gaseous SO2 plays a crucial role in the corrosion of urban infrastructure by acid rain or in the removal of SO2 from flue gas. We carried out a combined spectroscopic and theoretical investigation on the interaction of SO2 with a CaO(001) single crystal. First, the surface chemistry of SO2 was investigated at different temperatures using polarization-resolved IR reflection absorption spectroscopy. Three species were identified, and an in-depth density functional theory study was carried out, which allowed deriving a consistent picture. Unexpectedly, low temperature exposure to SO2 solely yields a physisorbed species. Only above 100 K, the transformation of this weakly bound adsorbate first to a chemisorbed sulfite and then to a sulfate occurs, effectively passivatating the surface. Our results provide the basis for more efficient strategies in corrosion protection of urban infrastructure and in lime-based desulfurization of flue gas.

2.
J Am Chem Soc ; 144(2): 1034-1044, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985273

RESUMO

A new atomic-scale anisotropy in the photoreaction of surface carboxylates on rutile TiO2(110) induced by gold clusters is found. STM and DFT+U are used to study this phenomenon by monitoring the photoreaction of a prototype hole-scavenger molecule, benzoic acid, over stoichiometric (s) s-TiO2, Au9/s-TiO2, and reduced (r) Au9/r-TiO2. STM results show that benzoic acid adsorption displaces a large fraction of Au clusters from the terraces toward their edges. DFT calculations explain that Au9 clusters on stoichiometric TiO2 are distorted by benzoic acid adsorption. The influence of sub-monolayers of Au on the UV/visible photoreaction of benzoic acid was explored at room temperature, with adsorbate depletion taken as a measure of activity. The empty sites, observed upon photoexcitation, occurred in elongated chains (2 to 6 molecules long) in the [11̅0] and [001] directions. A roughly 3-fold higher depletion rate is observed in the [001] direction. This is linked to the anisotropic conduction of excited electrons along [001], with subsequent trapping by Au clusters leaving a higher concentration of holes and thus an increased decomposition rate. To our knowledge this is the first time that atomic-scale directionality of a chemical reaction is reported upon photoexcitation of the semiconductor.

3.
J Phys Chem Lett ; 12(34): 8363-8369, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34432476

RESUMO

Understanding the mechanism behind the superior catalytic power of single- or few-atom heterogeneous catalysts has become an important topic in surface chemistry. This is particularly the case for gold, with TiO2 being an efficient support. Here we use scanning tunneling microscopy/spectroscopy with theoretical calculations to investigate the adsorption geometry and local electronic structure of several-atom Au clusters on rutile TiO2(110), with the clusters fabricated by controlled manipulation of single atoms. Our study confirms that Au1 and Au2 clusters prefer adsorption at surface O vacancies. Au3 clusters adsorb at O vacancies in a linear-chain configuration parallel to the surface; in the absence of O vacancies they adsorb at Ti5c sites with a structure of a vertically pointing upright triangle. We find that both the electronic structure and cluster-substrate charge transfer depend critically on the cluster size, bonding configuration, and local environment. This suggests the possibility of engineering cluster selectivity for specific catalytic reactions.

4.
J Phys Chem C Nanomater Interfaces ; 125(25): 13770-13779, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34239659

RESUMO

Understanding the adsorption and photoactivity of acetic acid and trimethyl acetic acid on TiO2 surfaces is important for improving the performance of photocatalysts and dye-sensitized solar cells. Here we present a structural study of adsorption on rutile TiO2(100)-1 × 1 and -1 × 3 using Scanning Tunnelling Microscopy and Density Functional Theory calculations. Exposure of both terminations to acetic acid gives rise to a ×2 periodicity in the [001] direction (i.e., along Ti rows), with a majority ordered c(2 × 2) phase in the case of the 1 × 1 termination. The DFT calculations suggest that the preference of c(2 × 2) over the 2 × 1 periodicity found for TiO2(110)-1 × 1 can be attributed to an increase in interadsorbate Coulomb repulsion. Exposure of TiO2(100)-1 × 1 and -1 × 3 to trimethyl acetic acid gives rise to largely disordered structures due to steric effects, with quasi-order occurring in small areas and near step edges where these effects are reduced.

5.
ACS Catal ; 11(3): 1613-1623, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34164226

RESUMO

There is an ongoing search for materials which can accomplish the activation of two dangerous greenhouse gases like carbon dioxide and methane. In the area of C1 chemistry, the reaction between CO2 and CH4 to produce syngas (CO/H2), known as methane dry reforming (MDR), is attracting a lot of interest due to its green nature. On Pt(111), high temperatures must be used to activate the reactants, leading to a substantial deposition of carbon which makes this metal surface useless for the MDR process. In this study, we show that strong metal-support interactions present in Pt/CeO2(111) and Pt/CeO2 powders lead to systems which can bind CO2 and CH4 well at room temperature and are excellent and stable catalysts for the MDR process at moderate temperature (500 °C). The behavior of these systems was studied using a combination of in situ/operando methods (AP-XPS, XRD, and XAFS) which pointed to an active Pt-CeO2-x interface. In this interface, the oxide is far from being a passive spectator. It modifies the chemical properties of Pt, facilitating improved methane dissociation, and is directly involved in the adsorption and dissociation of CO2 making the MDR catalytic cycle possible. A comparison of the benefits gained by the use of an effective metal-oxide interface and those obtained by plain bimetallic bonding indicates that the former is much more important when optimizing the C1 chemistry associated with CO2 and CH4 conversion. The presence of elements with a different chemical nature at the metal-oxide interface opens the possibility for truly cooperative interactions in the activation of C-O and C-H bonds.

6.
Angew Chem Int Ed Engl ; 60(25): 13835-13839, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-33826220

RESUMO

Multiply bonded lanthanide oxo groups are rare in coordination compounds and have not previously been reported for a surface termination of a lanthanide oxide. Here we report the observation of a Ce=O terminated ceria surface in a CeO2 (111)-( 3 × 3 )R30° reconstruction of ≈3 nm thick ceria islands prepared on Pt(111). This is evidenced by scanning tunnelling microscopy (STM), low energy electron diffraction (LEED) and high-resolution electron energy loss spectroscopy (HREELS) measurements in conjunction with density functional theory (DFT) calculations. A Ce=O stretching frequency of 775 cm-1 is observed in HREELS, compared with 766 cm-1 calculated by DFT. The calculations also predict that the Ce=O bond is weak, with an oxygen vacancy formation energy of 0.85 eV. This could play an important role in the facile removal of lattice oxygen from CeO2 , accompanied by the reduction of CeIV to CeIII , which is a key attribute of ceria-based systems in connection with their unique catalytic properties.

7.
Angew Chem Int Ed Engl ; 59(35): 14802-14808, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32449822

RESUMO

The major challenge in solar water splitting to H2 and O2 is in making a stable and affordable system for large-scale applications. We have designed, fabricated, and tested a photoelectrochemical reactor characterized as follows: 1) it comprises an integrated device to reduce the balance of the system cost, 2) it utilizes concentrated sunlight to reduce the photoabsorber cost, and 3) it employs and alkaline electrolyte to reduce catalyst cost and eliminate external thermal management needs. The system consists of an III-V-based photovoltaic cell integrated with Ni foil as an O2 evolution catalyst that also protects the cell from corrosion. At low light concentration, without the use of optical lenses, the solar-to-hydrogen (STH) efficiency was 18.3 %, while at high light concentration (up to 207 suns) with the use of optical lenses, the STH efficiency was 13 %. Catalytic tests conducted for over 100 hours at 100-200 suns showed no sign of degradation nor deviation from product stoichiometry (H2 /O2 =2). Further tests projected a system stability of years.

8.
ACS Omega ; 5(18): 10510-10518, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32426608

RESUMO

The effect of electrode area, electrolyte concentration, temperature, and light intensity (up to 218 sun) on PV electrolysis of water is studied using a high concentrated triple-junction (3-J) photovoltaic cell (PV) connected directly to an alkaline membrane electrolyzer (EC). For a given current, the voltage requirement to run an electrolyzer increases with a decrease in electrode sizes (4.5, 2.0, 0.5, and 0.25 cm2) due to high current densities. The high current density operation leads to high Ohmic losses, most probably due to the concentration gradient and bubble formation. The EC operating parameters including the electrolyte concentration and temperature reduce the voltage requirement by improving the thermodynamics, kinetics, and transport properties of the overall electrolysis process. For a direct PV-EC coupling, the maximum power point of PV (P max) is matched using EC I-V (current-voltage) curves measured for different electrode sizes. A shift in the EC I-V curves toward open-circuit voltage (V oc) reduces the P op (operating power) to hydrogen efficiencies due to the increased voltage losses above the equilibrium water-splitting potential. The solar-to-hydrogen (STH) efficiencies remained comparable (∼16%) for all electrode sizes when the operating current (I op) was similar to the short-circuit current (I sc) irrespective of the operating voltage (V op), electrolyzer temperature, and electrolyte concentration.

9.
J Chem Phys ; 152(2): 024709, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31941300

RESUMO

A novel method of measuring the core level binding energies of multiple sized nanoparticles on the same substrate is demonstrated using the early stage of Au nanoparticle growth on reduced r-TiO2(110). This method employed in situ scanning tunneling microscopy (STM) and microfocused X-ray photoemission spectroscopy. An STM tip-shadowing method was used to synthesize patterned areas of Au nanoparticles on the substrate with different coverages and sizes. Patterns were identified and imaged using a UV photoelectron emission microscope. The Au 4f core level binding energies of the nanoparticles were investigated as a function of Au nanoparticle coverage and size. A combination of initial and final state effects modifies the binding energies of the Au 4f core levels as the nanoparticle size changes. When single Au atoms and Au3 clusters are present, the Au 4f7/2 binding energy, 84.42 eV, is similar to that observed at a high coverage (1.8 monolayer equivalent), resulting from a cancellation of initial and final state effects. As the coverage is increased, there is a decrease in binding energy, which then increases at a higher coverage to 84.39 eV. These results are consistent with a Volmer-Weber nucleation-growth model of Au nanoparticles at oxygen vacancies, resulting in electron transfer to the nanoparticles.

10.
Front Chem ; 7: 780, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824920

RESUMO

The reaction of ethylene glycol has been studied over Ag-Pd/TiO2 (anatase) under photo-irradiation while monitoring the reaction products (in the gas and liquid phases) as a function of time and at different partial pressures of molecular oxygen. The catalyst contained metal particles with a mean size of about 1 nm, most likely in the form of alloy (TEM, STEM, and XPS). The complex reaction network involves hydrogen abstraction, C-C bond dissociation, de-carbonylation and water gas shift ultimately yielding hydrogen and CO2. The two main competing reactions were found to be, photo reforming and photo-oxidation. Based on our previous study, Ag presence improves the reaction rate for hydrogen production, most likely via decreasing the adsorption energy of CO when compared to pure Pd. At high ethylene glycol concentrations, the rate of hydrogen produced decreased by a factor of two while changing O2 partial pressure from 0.001 to 0.2 atm. The rate was however very sensitive to oxygen partial pressures at low ethylene glycol concentrations, decreasing by about 50 times with increasing oxygen pressures to 1 atm. The order of reaction with respect to O2 changed from near zero at high oxygen partial pressure to ½ at low partial pressure (in 0.008-0.2 atm. range). Liquid phase analysis indicated that the main reaction product was formaldehyde, where its concentration was found to be higher than that of H2 and CO2. The mass balance approached near unity only upon the incorporation of formaldehyde and after a prolonged reaction time. This suggests that the photo-reforming reaction was not complete even at prolonged time, most likely due to kinetic limitations.

11.
ACS Appl Mater Interfaces ; 11(23): 20752-20761, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31091878

RESUMO

The facile synthesis of hierarchically functional, catalytically active, and electrochemically stable nanostructures holds a tremendous promise for catalyzing the efficient and durable oxygen evolution reaction (OER) and yet remains a formidable challenge. Herein, we report the scalable production of core-shell nanostructures composed of carbon-coated cobalt diphosphide nanosheets, C@CoP2, via three simple steps: (i) electrochemical deposition of Co species, (ii) gas-phase phosphidation, and (iii) carbonization of CoP2 for catalytic durability enhancement. Electrochemical characterizations showed that C@CoP2 delivers an overpotential of 234 mV, retains its initial activity for over 80 h of continuous operation, and exhibits a fast OER rate of 63.8 mV dec-1 in base.

12.
J Phys Chem C Nanomater Interfaces ; 121(44): 24721-24725, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29152035

RESUMO

Au nanoparticles supported on reducible metal oxide surfaces are known to be active catalysts for a number of reactions including CO oxidation and hydrogen production. The exact choice of a metal oxide support has been shown to have a marked impact on activity, suggesting that interactions between Au and the support play a key role in catalysis. For TiO2, a model substrate for Au catalysis, it had been thought that bridging oxygen vacancies are involved in binding Au atoms to the (110) surface based on indirect evidence. However, a recent scanning transmission electron microscopy study of single Pt atoms on TiO2(110) suggests that subsurface vacancies are more important. To clarify the role of bridging or subsurface vacancies we employ scanning tunneling microscopy to determine the bonding site of single Au atoms on TiO2(110). Using in situ deposition as well as a manipulation method, we provide definitive evidence that the bonding site is atop surface oxygen vacancies.

13.
ACS Omega ; 2(8): 4828-4837, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457762

RESUMO

We have investigated a Z-scheme based on a ZnO/Pt/CdZnS photocatalyst, active in the presence of a complex medium composed of acetic acid and benzyl alcohol, the effects of which on the catalyst stability and performance are studied. Transmission electron microscopy images showed uniformly dispersed sub-nanometer Pt particles. Inductively coupled plasma and X-ray photoelectron spectroscopy analyses suggested that Pt is sandwiched between ZnO and CdZnS. An apparent quantum yield (AQY) of 34% was obtained over the [ZnO]4/1 wt %Pt/CdZnS system at 360 nm, 2.5-fold higher than that of 1%Pt/CdZnS (14%). Furthermore, an AQY of 16% was observed using [ZnO]4/1 wt %Pt/CdZnS, which was comparable to that of 1 wt %Pt/CdZnS (10%) at 460 nm. On the basis of these results, we proposed a charge transfer mechanism, which was confirmed through femtosecond transient absorption spectroscopy. Finally, we identified the two main factors that affected the stability of the catalyst, which were the sacrificial reagent and the acidic pH.

14.
Small ; 12(40): 5530-5537, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27578319

RESUMO

The remote hydrogen plasma is able to create abundant S-vacancies on amorphous molybdenum sulfide (a-MoSx ) as active sites for hydrogen evolution. The results demonstrate that the plasma-treated a-MoSx exhibits superior performance and higher stability than Pt in a proton exchange membrane based electrolyzers measurement as a proof-of-concept of industrial application.

15.
Chemistry ; 22(39): 13894-13899, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27531470

RESUMO

A composite of the metal-organic framework (MOF) NH2 -MIL-125(Ti) and molecular and ionic nickel(II) species, catalyzed hydrogen evolution from water under UV light. In 95 v/v % aqueous conditions the composite produced hydrogen in quantities two orders of magnitude higher than that of the virgin framework and an order of magnitude greater than that of the molecular catalyst. In a 2 v/v % water and acetonitrile mixture, the composite demonstrated a TOF of 28 mol H2  g(Ni)-1  h-1 and remained active for up to 50 h, sustaining catalysis for three times longer and yielding 20-fold the amount of hydrogen. Appraisal of physical mixtures of the MOF and each of the nickel species under identical photocatalytic conditions suggest that similar surface localized light sensitization and proton reduction processes operate in the composite catalyst. Both nickel species contribute to catalytic conversion, although different activation behaviors are observed.

16.
Chemistry ; 22(38): 13459-63, 2016 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-27246987

RESUMO

An efficient heterogenized water oxidation catalyst (2_TiO2 ) has been synthesized by immobilizing the Kläui-type organometallic precursor [Cp*Ir{P(O)(OH)2 }3 ]Na (2, Cp*=1,2,3,4,5-pentamethylcyclopentadienyl ligand) onto rutile TiO2 . Iridium is homogeneously distributed at the molecular and atomic/small cluster level in 2_TiO2 and 2'_TiO2 (solid catalyst recovered after the first catalytic run), respectively, as indicated by STEM-HAADF (scanning transmission electron microscopy - high angle annular dark field) studies. 2'_TiO2 exhibits TOF values up to 23.7 min(-1) in the oxidation of water to O2 driven by NaIO4 at nearly neutral pH, and a TON only limited by the amount of NaIO4 used, as indicated by multiple run experiments. Furthermore, while roughly 40 % leaching is observed during the first catalytic run, 2'_TiO2 does not undergo any further leaching even when in contact with strongly basic solutions and completely maintains its activity for thousands of cycles. NMR studies, in combination with ICP-OES (inductively coupled plasma optical emission spectrometry), indicate that the activation of 2_TiO2 occurs through the initial oxidative dissociation of PO4 (3-) , ultimately leading to active centers in which a 1:1 P/Ir ratio is present (derived from the removal of two PO4 (3-) units) likely missing the Cp* ligand.

17.
Sci Rep ; 6: 21990, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26915303

RESUMO

Finding the active sites of catalysts and photo-catalysts is crucial for an improved fundamental understanding and the development of efficient catalytic systems. Here we have studied the photo-activated dehydrogenation of ethanol on reduced and oxidized rutile TiO2(110) in ultrahigh vacuum conditions. Utilizing scanning tunnelling microscopy, various spectroscopic techniques and theoretical calculations we found that the photo-reaction proceeds most efficiently when the reactants are adsorbed on regular Ti surface sites, whereas species that are strongly adsorbed at surface defects such as O vacancies and step edges show little reaction under reducing conditions. We propose that regular Ti surface sites are the most active sites in photo-reactions on TiO2.

18.
Chemistry ; 21(29): 10290-5, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26073972

RESUMO

A stable noble-metal-free hydrogen evolution photocatalyst based on graphite carbon nitride (g-C3 N4 ) was developed by a molecular-level design strategy. Surface functionalization was successfully conducted to introduce a single nickel active site onto the surface of the semiconducting g-C3 N4 . This catalyst family (with less than 0.1 wt % of Ni) has been found to produce hydrogen with a rate near to the value obtained by using 3 wt % platinum as co-catalyst. This new catalyst also exhibits very good stability under hydrogen evolution conditions, without any evidence of deactivation after 24 h.

19.
ChemSusChem ; 8(15): 2551-9, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26105614

RESUMO

The mixed-phase nature of P25 TiO2 (85 % anatase/15 % rutile) plays a key role in the high H2 production rates shown by Au/P25 TiO2 photocatalysts in alcohol/water systems. However, a full understanding of the synergistic charge transfer mechanisms between the TiO2 polymorphs that drive the high rates is yet to be realised. Here, we deconstruct P25 TiO2 into its component phases, functionalise the phases with Au nanoparticles and explore charge transfer in Au/TiO2 systems using EPR spectroscopy. EPR spectroscopy and photocatalytic data provide direct evidence that electrons excited across the rutile band gap move to anatase lattice traps through interfacial surface sites, which decreases electron-hole pair recombination and increases charge carrier availability for photoreactions. In particular, three-phase interfacial sites between Au, anatase and rutile appear to be H2 evolution "hot spots". The results isolate the origin of high photocatalytic H2 production rates seen in Au/P25 TiO2 systems.


Assuntos
Ouro/química , Hidrogênio/química , Nanopartículas Metálicas/química , Titânio/química , Titânio/efeitos da radiação , Raios Ultravioleta , Catálise , Processos Fotoquímicos
20.
Phys Chem Chem Phys ; 16(41): 22588-99, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25230925

RESUMO

Molecular and dissociative adsorption processes of ethanol on stoichiometric and O-defected CeO2(111) surfaces alone as well as in the presence of one metal atom (Pd or Rh) are studied using spin-polarized density functional theory (DFT) with the GGA + U method (Ueff = 5.0 eV). Dissociative adsorption (onto ethoxides) is slightly more stable than molecular adsorption onto stoichiometric CeO2(111). The creation of surface oxygen vacancies further stabilizes both modes. In the case of ethoxide adsorbed onto a Ce(3+) cation, adjacent to the oxygen vacancy, charge transfer to a nearest Ce(4+) cation occurs. In addition, the interactions of Pd1 (or Rh1), Pd10 (or Rh10) as well as of a bimetal cluster (Rh4Pd6) with perfect and O-defected CeO2(111) surfaces have been studied. From spin density calculations, it was found that the addition of metal changes the oxidation state of Ce(4+) cations. The magnetic moment at the neighboring Rh or Pd induces a charge transfer to Ce(4+) cations (i.e. Ce(4+) (4f(0)) that becomes Ce(3+) (4f(1))) and consequently M is oxidized to Pd(δ+) (or Rh(δ+)). Similar to the atomic metal adsorption, Rh10 has a stronger adsorption energy on the perfect surface than Pd10 (Eads = -6.49 and -5.75 eV, respectively), while that of Rh4Pd6 was in between (Eads = -6.00 eV). The effect of one metal atom on the adsorption of ethanol was also studied. The presence of the metal further stabilized the adsorption energy of ethanol/ethoxide in its bridging configuration. The creation of an oxygen vacancy nearest the metal resulted in considerable stabilization of ethoxides (Eads = -1.67 eV in the case of Pd) compared to those found on the O-defected CeO2(111) surface alone (Eads = -0.85 eV).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...