Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(1)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36671552

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death and illness in Europe and worldwide, responsible for a staggering 47% of deaths in Europe. Over the past few years, there has been increasing evidence pointing to bioactive sphingolipids as drivers of CVDs. Among them, most studies place emphasis on the cardiovascular effect of ceramides and sphingosine-1-phosphate (S1P), reporting correlation between their aberrant expression and CVD risk factors. In experimental in vivo models, pharmacological inhibition of de novo ceramide synthesis averts the development of diabetes, atherosclerosis, hypertension and heart failure. In humans, levels of circulating sphingolipids have been suggested as prognostic indicators for a broad spectrum of diseases. This article provides a comprehensive review of sphingolipids' contribution to cardiovascular, cerebrovascular and metabolic diseases, focusing on the latest experimental and clinical findings. Cumulatively, these studies indicate that monitoring sphingolipid level alterations could allow for better assessment of cardiovascular disease progression and/or severity, and also suggest them as a potential target for future therapeutic intervention. Some approaches may include the down-regulation of specific sphingolipid species levels in the circulation, by inhibiting critical enzymes that catalyze ceramide metabolism, such as ceramidases, sphingomyelinases and sphingosine kinases. Therefore, manipulation of the sphingolipid pathway may be a promising strategy for the treatment of cardio- and cerebrovascular diseases.


Assuntos
Ceramidas , Esfingolipídeos , Humanos , Esfingolipídeos/metabolismo , Ceramidas/metabolismo , Esfingosina/metabolismo , Pulmão/metabolismo , Ceramidases/metabolismo , Lisofosfolipídeos/metabolismo , Biomarcadores
2.
J Pharm Biomed Anal ; 217: 114827, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35569273

RESUMO

COVID-19 infection evokes various systemic alterations that push patients not only towards severe acute respiratory syndrome but causes an important metabolic dysregulation with following multi-organ alteration and potentially poor outcome. To discover novel potential biomarkers able to predict disease's severity and patient's outcome, in this study we applied untargeted lipidomics, by a reversed phase ultra-high performance liquid chromatography-trapped ion mobility mass spectrometry platform (RP-UHPLC-TIMS-MS), on blood samples collected at hospital admission in an Italian cohort of COVID-19 patients (45 mild, 54 severe, 21 controls). In a subset of patients, we also collected a second blood sample in correspondence of clinical phenotype modification (longitudinal population). Plasma lipid profiles revealed several lipids significantly modified in COVID-19 patients with respect to controls and able to discern between mild and severe clinical phenotype. Severe patients were characterized by a progressive decrease in the levels of LPCs, LPC-Os, PC-Os, and, on the contrary, an increase in overall TGs, PEs, and Ceramides. A machine learning model was built by using both the entire dataset and with a restricted lipid panel dataset, delivering comparable results in predicting severity (AUC= 0.777, CI: 0.639-0.904) and outcome (AUC= 0.789, CI: 0.658-0.910). Finally, re-building the model with 25 longitudinal (t1) samples, this resulted in 21 patients correctly classified. In conclusion, this study highlights specific lipid profiles that could be used monitor the possible trajectory of COVID-19 patients at hospital admission, which could be used in targeted approaches.


Assuntos
COVID-19 , Lipidômica , Biomarcadores , Humanos , Espectrometria de Mobilidade Iônica , Lipídeos
3.
J Clin Invest ; 132(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104805

RESUMO

Sortilin has been positively correlated with vascular disorders in humans. No study has yet evaluated the possible direct effect of sortilin on vascular function. We used pharmacological and genetic approaches coupled with study of murine and human samples to unravel the mechanisms recruited by sortilin in the vascular system. Sortilin induced endothelial dysfunction of mesenteric arteries through NADPH oxidase 2 (NOX2) isoform activation, dysfunction that was prevented by knockdown of acid sphingomyelinase (ASMase) or sphingosine kinase 1. In vivo, recombinant sortilin administration induced arterial hypertension in WT mice. In contrast, genetic deletion of sphingosine-1-phosphate receptor 3 (S1P3) and gp91phox/NOX2 resulted in preservation of endothelial function and blood pressure homeostasis after 14 days of systemic sortilin administration. Translating these research findings into the clinical setting, we detected elevated sortilin levels in hypertensive patients with endothelial dysfunction. Furthermore, in a population-based cohort of 270 subjects, we showed increased plasma ASMase activity and increased plasma levels of sortilin, S1P, and soluble NOX2-derived peptide (sNOX2-dp) in hypertensive subjects, and the increase was more pronounced in hypertensive subjects with uncontrolled blood pressure. Our studies reveal what we believe is a previously unrecognized role of sortilin in the impairment of vascular function and in blood pressure homeostasis and suggest the potential of sortilin and its mediators as biomarkers for the prediction of vascular dysfunction and high blood pressure.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Endotélio Vascular/metabolismo , Hipertensão/metabolismo , Lisofosfolipídeos/metabolismo , Transdução de Sinais , Esfingomielina Fosfodiesterase/metabolismo , Esfingosina/análogos & derivados , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Endotélio Vascular/lesões , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hipertensão/genética , Hipertensão/fisiopatologia , Lisofosfolipídeos/genética , Camundongos , Camundongos Knockout , Esfingomielina Fosfodiesterase/genética , Esfingosina/genética , Esfingosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...