Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-10, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37776010

RESUMO

High blood sugar is a defining feature of chronic disease, diabetes mellitus (DM). There are numerous commercially available medications for the treatment of DM. However, managing the patient's glucose levels remain a challenge because of the gradual reduction in beta-cell function and some side effects from the long-term use of various medications. Previous research has shown that the phenolic compound of henna plant (Lawsonia inermis L.) has the potential as anti-diabetic agent since it is able to suppress the digesting of α-amylase enzyme. In these studies, the plant' phenolic compounds have been isolated and characterized using UV, IR, NMR and LC-MS methods. Furthermore, the compound interaction into the active site of the α-amylase enzyme has been analyzed using molecular docking and molecular dynamics, as well as into α-glucosidase enzyme for predicting of the affinities. The results showed that isolated compound has the molecular formula of C15H10O6 with eleven degrees of unsaturation (DBE; double bond equivalence). The DBE value corresponds to the structure of the luteolin compound having an aromatic ring (8), a carbonyl group on the side chain (1) and a ketone ring with (2). The interaction study of the isolated compound with α-amylase and α-glucosidase enzyme using molecular docking compared to the positive control (acarbose) gave binding energy of -8.03 and -8.95 kcal/mol, respectively. The molecular dynamics simulation using the MM-PBSA method, complex stability based on solvent accessible surface area (SASA), root mean square deviation (RMSD), and root mean square fluctuation (RMSF) revealed that the compound has a high affinity for receptors. The characteristics of skin permeability, absorption, and distribution using ADME-Tox model were also well predicted. The results indicate that the phenolic compound isolated from L. inermis leaf was luteolin and it has the potential as an anti-diabetic agent.Communicated by Ramaswamy H. Sarma.

2.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37242452

RESUMO

Alopecia is a condition in which hair on the scalp or other areas of the body is lost or falls out excessively. Nutritional deficiency causes blood flow to the head to decrease causing the hormone testosterone to be changed by the enzyme 5-α-reductase to dihydrotestosterone, which inhibits the growth phase and accelerates the death phase. One of the methods developed to treat alopecia is through inhibition of the 5-α-reductase enzyme, which converts testosterone to its more potent metabolite, dihydrotestosterone (DHT). Ethnomedicinally, Merremia peltata leaf is used by the people of Sulawesi as a remedy for baldness. Therefore, in this research, an in vivo study was conducted on rabbits to determine the anti-alopecia activity of M. peltata leaf compounds. The structure of the compounds isolated from the M. peltata leaf ethyl acetate fraction was determined by analysis of NMR and LC-MS data. An in silico study was then carried out using minoxidil as a comparison ligand; scopolin (1) and scopoletin (2) isolated from M. peltata leaf were identified as anti-alopecia compounds by predicting docking, simulating molecular dynamics and predicting absorption, distribution, metabolism, excretion, and toxicology (ADME-Tox). Compounds 1 and 2 had a better effect on hair growth compared to positive controls, and NMR and LC-MS analysis showed that they had comparable binding energies to receptors in the molecular docking interaction study: -4.51 and -4.65 kcal/mol, respectively, compared to -4.8 kcal/mol for minoxidil. Molecular dynamics simulation analysis with the parameters binding free energy calculated using the MM-PBSA method and complex stability based on SASA, PCA, RMSD, and RMSF showed that scopolin (1) has a good affinity for androgens receptors. The ADME-Tox prediction for scopolin (1) showed good results for the parameters of skin permeability, absorption and distribution. Therefore, scopolin (1) is a potential antagonist to androgen receptors and could be useful in the treatment of alopecia.

3.
ScientificWorldJournal ; 2022: 1123047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35978863

RESUMO

Alopecia is a health condition in which the hair loses its function in some or all of the body. Alopecia occurs due to various genetic, environmental, and nutritional factors. One of the methods developed to treat alopecia is through inhibition of the enzyme 5-α-reductase, which converts testosterone into its more potent metabolite, dihydrotestosterone (DHT). In ethnomedicine, the leaves of Merremia peltata are used by the people of Sulawesi as a remedy for baldness. Therefore, in this study, an in vivo study was conducted on rabbits to investigate the antialopecia activity of the ethanolic extract of M. peltata leaves. The purified M. peltata leaf extract was fractionated using vacuum liquid chromatography with several solvents to produce fractions F1-F5. Each fraction was then retested in vivo in rabbits, and its content was then analyzed by LC-MS. An in silico study was then carried out using minoxidil as a comparison ligand; 17 compounds derived from M. peltata leaves were identified as antialopecia compounds through prediction of molecular interactions and molecular dynamics simulation and prediction of absorption, distribution, metabolism, excretion, and toxicology (ADME-Tox). The assay results showed that fractions F2 and F3 had a better effect on hair growth compared to the positive control, and the test compound obtained from the LC-MS analysis, bufotalinin, had a strong binding energy to the receptor in the molecular docking interaction study: -5.99 kcal/mol compared to -4.8 kcal/mol for minoxidil. Molecular dynamics simulation analysis with complex stability parameters based on solvent-accessible surface area (SASA), principal component analysis (PCA), root mean square deviation (RMSD), and root mean square fluctuation (RMSF) showed that bufotalinin has good affinity for androgen receptors. ADME-Tox prediction for bufotalinin showed good results for the parameters of skin permeability, absorption, and distribution. Therefore, bufotalinin, a steroid compound, is a potential androgen receptor antagonist and could be useful in the treatment of alopecia.


Assuntos
Convolvulaceae , Simulação de Dinâmica Molecular , Alopecia , Animais , Humanos , Minoxidil , Simulação de Acoplamento Molecular , Coelhos , Receptores Androgênicos , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA