Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38427275

RESUMO

Melanoma is the main cause of death among skin cancers and its incidence worldwide has been experiencing an appalling increase. However, traditional treatments lack effectiveness in advanced or metastatic patients. Immunotherapy, meanwhile, has been shown to be an effective treatment option, but the rate of cancers responding remains far from ideal. Here we have developed a personalized neoantigen peptide-based cancer vaccine by encapsulating patient derived melanoma neoantigens in polyethylenimine (PEI)-functionalised poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and coating them with polyinosinic:polycytidylic acid (poly(I:C)). We found that PLGA NPs can be effectively modified to be coated with the immunoadjuvant poly(I:C), as well as to encapsulate neoantigens. In addition, we found that both dendritic cells (DCs) and lymphocytes were effectively stimulated. Moreover, the developed NP was found to have a better immune activation profile than NP without poly(I:C) or without antigen. Our results demonstrate that the developed vaccine has a high capacity to activate the immune system, efficiently maturing DCs to present the antigen of choice and promoting the activity of lymphocytes to exert their cytotoxic function. Therefore, the immune response generated is optimal and specific for the elimination of melanoma tumour cells.

2.
Trends Pharmacol Sci ; 45(4): 350-365, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508958

RESUMO

The use of extracellular vesicles (EVs) for drug delivery is being widely explored by scientists from several research fields. To fully exploit their therapeutic potential, multiple methods for loading EVs have been developed. Although exogenous methods have been extensively utilized, in recent years the endogenous method has gained significant attention. This approach, based on parental cell genetic engineering, is suitable for loading large therapeutic biomolecules such as proteins and nucleic acids. We review the most commonly used EV loading methods and emphasize the inherent advantages of the endogenous method over the others. We also examine the most recent advances and applications of this innovative approach to inform on the diverse therapeutic opportunities that lie ahead in the field of EV-based therapies.


Assuntos
Sistemas de Liberação de Medicamentos , Vesículas Extracelulares , Humanos , Sistemas de Liberação de Medicamentos/métodos , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38185776

RESUMO

Traditional approaches to solid rectal therapies have halted progress, leading to a continual decline in the use of conventional suppositories. Additive manufacturing techniques have been recently explored as a suitable innovative tool for suppository fabrication. However, little advancement has been made in composition materials for 3D-printed suppository (3DPS) manufacturing and still, conventional vehicles are often used for construct fabrication, hindering the growth in the field. As a novelty, this study unveils a ground-breaking Laponite-alginate hydrogel-based 3DPS. Interestingly, this study proposes a novel approach for loading drugs into the 3DPS employing for the first time the post-printing loading. Thus, a passive loading strategy of molecular models is developed, demonstrating the versatility and capacity to load molecules of different charges and molecular sizes within the matrix systems. This novel strategy allows adapting the load of a wide range of drugs into a single ink, which simplifies and speeds up the 3DPS technological development process for drugs with different physico-chemical properties. Additionally, in this research, a displacement strategy of the three-dimensional Laponite matrices is developed in order to enhance the drug release capacity through the 3DPS and their disintegration capacity, resulting in a significant improvement of the drug diffusion through the hydrogel matrix and a rapid disintegration of the 3DPS. Finally, our study demonstrates that the obtained 3DPS have a suitable in vivo behavior, being non-obstructive and allowing the normal motility of the rats intestine.

4.
Biomater Adv ; 155: 213682, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925826

RESUMO

Chronic wounds are a worldwide problem that affect >40 million people every year. The constant inflammatory status accompanied by prolonged bacterial infections reduce patient's quality of life and life expectancy drastically. An important cell type involved in the wound healing process are mesenchymal stromal cells (MSCs) due to their long-term demonstrated immunomodulatory and pro-regenerative capacity. Thus, in this work, we leveraged and compared the therapeutic properties of MSCs derived from both adipose tissue and hair follicle, which we combined with sponge-like scaffolds (SLS) made of valorized soy protein and ß-chitin. In this regard, the combination of these cells with biomaterials permitted us to obtain a multifunctional therapy that allowed high cell retention and growing rates while maintaining adequate cell-viability for several days. Furthermore, this combined therapy demonstrated to increase fibroblasts and keratinocytes migration, promote human umbilical vein endothelial cells angiogenesis and protect fibroblasts from highly proteolytic environments. Finally, this combined therapy demonstrated to be highly effective in reducing wound healing time in vivo with only one treatment change during all the experimental procedure, also promoting a more functional and native-like healed skin.


Assuntos
Diabetes Mellitus , Células-Tronco Mesenquimais , Humanos , Proteínas de Soja/farmacologia , Proteínas de Soja/uso terapêutico , Proteínas de Soja/metabolismo , Folículo Piloso , Quitina/farmacologia , Quitina/uso terapêutico , Quitina/metabolismo , Qualidade de Vida , Cicatrização , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo , Diabetes Mellitus/metabolismo , Células Endoteliais da Veia Umbilical Humana
5.
J Mater Chem B ; 11(29): 6896-6910, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37377169

RESUMO

In the current study, we produced a hydro-film dressing for the treatment of chronic wounds. The hydro-film structure was composed of gelatin cross-linked with citric acid, agar and Aloe vera extract (AV); additionally epidermal growth factor (EGF) was loaded to promote wound healing. Due to the excellent hydrogel-forming ability of gelatin, the obtained hydro-film was able to swell 884 ± 36% of its dry weight, which could help controlling wound moisture. To improve gelatin mechanical properties, polymer chains were cross-linked with citric acid and agar, reaching an ultimate tensile strength that was in the highest range of human skin. In addition, it showed a slow degradation profile that resulted in a remaining weight of 28 ± 8% at day 28. Regarding, biological activity, the addition of AV and citric acid provided the ability to reduce human macrophage activation, which could help reverse the permanent inflammatory state of chronic wounds. Moreover, loaded EGF, together with the structural AV of the hydro-film, promoted human keratinocyte and fibroblast migration, respectively. Furthermore, the hydro-films presented excellent fibroblast adhesiveness, so they could be useful as provisional matrices for cell migration. Accordingly, these hydro-films showed suitable physicochemical characteristics and biological activity for chronic wound healing applications.


Assuntos
Aloe , Fator de Crescimento Epidérmico , Humanos , Fator de Crescimento Epidérmico/farmacologia , Aloe/química , Ágar/farmacologia , Gelatina/química , Cicatrização
6.
Artigo em Inglês | MEDLINE | ID: mdl-37157144

RESUMO

Neurodegenerative diseases (NDs) such as Alzheimer's disease (AD) and Parkinson's disease (PD) are an accelerating global health problem as life expectancy rises worldwide. Despite their significant burden in public health systems to date, the existing treatments only manage the symptoms without slowing down disease progression. Thus, the ongoing neurodegenerative process remains untreated. Moreover, the stronghold of the brain-the blood-brain barrier (BBB)-prevents drug penetrance and dwindles effective treatments. In the last years, nanotechnology-based drug delivery systems (DDS) have become a promising approach to target and treat these disorders related to the central nervous system (CNS). PLGA based nanoparticles (NPs) were the first employed DDS for effective drug delivery. However, the poor drug loading capacity and localized immunogenicity prompted the scientific community to move to another DDS such as lipid-based NPs. Despite the lipid NPs' safety and effectiveness, their off-target accumulation together with the denominated CARPA (complement activation-related pseudo allergy) reaction has limited their complete clinical translation. Recently, biological NPs naturally secreted by cells, termed as extracellular vesicles (EVs) have emerged as promising more complex biocompatible DDS. In addition, EVs act as dual players in NDs treatment, as a "cell free" therapy themselves, as well as new biological NPs with numerous characteristics that qualify them as promising carriers over synthetic DDS. The present review aims to display advantages, drawbacks, current limitations and future prospective of the previously cited synthetic and biological DDS to enter the brain and treat one of 21st century most challenging diseases, NDs. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Nanopartículas , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Encéfalo , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos , Nanopartículas/uso terapêutico , Lipídeos
7.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240369

RESUMO

In the last few years, the importance of neoantigens in the development of personalized antitumor vaccines has increased remarkably. In order to study whether bioinformatic tools are effective in detecting neoantigens that generate an immune response, DNA samples from patients with cutaneous melanoma in different stages were obtained, resulting in a total of 6048 potential neoantigens gathered. Thereafter, the immunological responses generated by some of those neoantigens ex vivo were tested, using a vaccine designed by a new optimization approach and encapsulated in nanoparticles. Our bioinformatic analysis indicated that no differences were found between the number of neoantigens and that of non-mutated sequences detected as potential binders by IEDB tools. However, those tools were able to highlight neoantigens over non-mutated peptides in HLA-II recognition (p-value 0.03). However, neither HLA-I binding affinity (p-value 0.08) nor Class I immunogenicity values (p-value 0.96) indicated significant differences for the latter parameters. Subsequently, the new vaccine, using aggregative functions and combinatorial optimization, was designed. The six best neoantigens were selected and formulated into two nanoparticles, with which the immune response ex vivo was evaluated, demonstrating a specific activation of the immune response. This study reinforces the use of bioinformatic tools in vaccine development, as their usefulness is proven both in silico and ex vivo.


Assuntos
Vacinas Anticâncer , Melanoma , Neoplasias , Neoplasias Cutâneas , Humanos , Antígenos de Neoplasias/genética , Imunidade , Desenvolvimento de Vacinas , Neoplasias/genética
8.
Cytotherapy ; 25(10): 1027-1032, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37140499

RESUMO

BACKGROUND AIMS: Despite intensive research, to date, there is no effective treatment for neurodegenerative diseases. Among the different therapeutic approaches, recently, the use of extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) has gained attention. METHODS: In the present work, we focused on medium/large extracellular vesicles (m/lEVs) derived from hair follicle--derived (HF) MSCs, comparing their potential neuroprotective and anti-inflammatory effect against adipose tissue (AT)-MSC-derived m/lEVs. RESULTS: The obtained m/lEVs were similar in size with comparable expression of surface protein markers. The neuroprotective effect of both HF-m/lEVs and AT-m/lEVs was statistically significant in dopaminergic primary cell cultures, increasing cell viability after the incubation with 6-hidroxydopamine neurotoxin. Moreover, the administration of HF-m/lEVs and AT-m/lEVs counteracted the lipopolysaccharide-induced inflammation in primary microglial cell cultures, decreasing the levels of pro-inflammatory cytokines, tumor necrosis factor-α and interleukin-1ß. CONCLUSIONS: Taken together, HF-m/lEVs demonstrated comparable potential with that of AT-m/lEVs as multifaceted biopharmaceuticals for neurodegenerative disease treatment.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Doenças Neurodegenerativas , Humanos , Microglia , Folículo Piloso , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Vesículas Extracelulares/metabolismo
9.
Biomater Adv ; 149: 213414, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37031611

RESUMO

The formulation of hydrogels that meet the necessary flow characteristics for their extrusion-based 3D printing while providing good printability, resolution, accuracy and stability, requires long development processes. This work presents the technological development of a hydrogel-based ink of Laponite and alginate and evaluates its printing capacity. As a novelty, this article reports a standardizable protocol to quantitatively define the best printing parameters for the development of novel inks, providing new printability evaluation parameters such as the Printing Accuracy Escalation Index. As a result, this research develops a printable Laponite-Alginate hydrogel that presents printability characteristics. This ink is employed for the reproducible manufacture of 3D printed scaffolds with versatile and complex straight or curved printing patterns for a better adaptation to different final applications. Obtained constructs prove to be stable over time thanks to the optimization of a curing process. In addition, the study of the swelling and degradation behavior of the Laponite and alginate 3D printed scaffolds in different culture media allows the prediction of their behavior in future in vitro or in vivo developments. Finally, this study demonstrates the absence of cytotoxicity of the printed formulations, hence, setting the stage for their use in the field of biomedicine.


Assuntos
Hidrogéis , Tinta , Alginatos , Alicerces Teciduais , Impressão Tridimensional
10.
Drug Deliv Transl Res ; 13(5): 1520-1542, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37022605

RESUMO

The interest of extracellular vesicles (EVs) in cancer immunotherapy is increasing every day. EVs are lipid bilayer vesicles released by most cells, which contain the molecular signature of their parent cell. Melanoma-derived EVs present antigens specific to this aggressive type of cancer, but they also exert immunomodulatory and pro-metastatic activity. Until now, most reviews focus on the immunoevasive characteristics of tumour-derived EVs, but do not help to overcome the issues related to them. In this review, we describe isolation methods of EVs from melanoma patients and most interesting markers to oversee their effect if they are used as antigen carriers. We also discuss the methods developed so far to overcome the lack of immunogenicity of melanoma-derived EVs, which includes EV modification or adjuvant co-administration. In summary, we conclude that EVs can be an interesting antigen source for immunotherapy development once EV obtaining is optimised and the understanding of the mechanisms behind their multiple effects is further understood.


Assuntos
Vacinas Anticâncer , Vesículas Extracelulares , Melanoma , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Melanoma/terapia , Melanoma/metabolismo
11.
Int J Pharm ; 635: 122739, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36801363

RESUMO

Antimicrobial resistance (AMR) is a global health issue, which needs to be tackled without further delay. The World Health Organization(WHO) has classified three gram-negative bacteria, Pseudomonas aeruginosa, Klebsiella pneumonia and Acinetobacter baumannii, as the principal responsible for AMR, mainly causing difficult to treat nosocomial lung and wound infections. In this regard, the need for colistin and amikacin, the re-emerged antibiotics of choice for resistant gram-negative infections, will be examined as well as their associated toxicity. Thus, current but ineffective clinical strategies designed to prevent toxicity related to colistin and amikacin will be reported, highlighting the importance of lipid-based drug delivery systems (LBDDSs), such as liposomes, solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), as efficient delivery strategies for reducing antibiotic toxicity. This review reveals that colistin- and amikacin-NLCs are promising carriers with greater potential than liposomes and SLNs to safely tackle AMR, especially for lung and wound infections.


Assuntos
Acinetobacter baumannii , Pneumonia Bacteriana , Infecção dos Ferimentos , Humanos , Amicacina/farmacologia , Colistina/farmacologia , Lipossomos/farmacologia , Farmacorresistência Bacteriana Múltipla , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pneumonia Bacteriana/tratamento farmacológico , Pseudomonas aeruginosa , Sistemas de Liberação de Medicamentos , Pulmão , Infecção dos Ferimentos/tratamento farmacológico , Testes de Sensibilidade Microbiana
12.
Pharmaceutics ; 14(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36559336

RESUMO

Complex scaffolds composed of micro- and nano-structures are a key target in tissue engineering and the combination of sequential 3D printing and electrospinning enables the fabrication of these multi-scale structures. In this work, dual 3D printed and electrospun polycaprolactone (PCL) scaffolds with multiple mesh layers were successfully prepared. The scaffold macro- and micro-porosity were assessed by optical and scanning electron microscopy, showing that electrospun fibers formed aligned meshes within the pores of the scaffold. Consequently, the hydrophilicity of the scaffold increased with time, enhancing cell adhesion and growth. Additionally, compression tests in back and forth cycles demonstrated a good shape recovery behavior of the scaffolds. Biological results indicated that hybrid PCL scaffolds are biocompatible and enable a correct cell culture over time. Moreover, MC3T3-E1 preosteoblast culture on the scaffolds promoted the mineralization, increased the alkaline phosphatase (ALP) activity and upregulated the expression of early and late osteogenic markers, namely ALP and osteopontin (OPN), respectively. These results demonstrate that the sequential combination of 3D printing and electrospinning provides a facile method of incorporating fibers within a 3D printed scaffold, becoming a promising approach towards multi-scale hierarchical scaffolds capable of guiding the osteogenic differentiation.

13.
Biomater Adv ; 135: 212738, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35929212

RESUMO

The field of regenerative medicine has undergone a paradigm shift in recent decades thanks to the emergence of novel therapies based on the use of living organisms. The development of cell-based strategies has become a trend for the treatment of different conditions and pathologies. In this sense, the need for more adequate, biomimetic and well-planned treatments for chronic wounds has found different and innovative strategies, based on the combination of cells with dressings, which seek to revolutionize the wound healing management. Therefore, the objective of this review is to analyze the current state and the latest advances in the research of cell-based dressings for chronic wounds, ranging from traditional and "second generation" bioengineered living skin equivalents to mesenchymal stem cell dressings; the latter include biopolymeric porous scaffolds, electrospun nanofiber meshes, hydrogels and 3D printed bio-printed dressings. Finally, this review updates the completed and ongoing clinical trials in this field and encourages researchers to rethink these new approaches, manufacturing processes and mechanisms of action, as well as their administration strategies and timings.


Assuntos
Bandagens , Nanofibras , Nanofibras/uso terapêutico , Medicina Regenerativa , Pele/lesões , Cicatrização
14.
Cytokine Growth Factor Rev ; 68: 25-36, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35843774

RESUMO

Considering the high impact that severe Coronavirus disease 2019 (COVID-19) cases still pose on public health and their complex pharmacological management, the search for new therapeutic alternatives is essential. Mesenchymal stromal cells (MSCs) could be promising candidates as they present important immunomodulatory and anti-inflammatory properties that can combat the acute severe respiratory distress syndrome (ARDS) and the cytokine storm occurring in COVID-19, two processes that are mainly driven by an immunological misbalance. In this review, we provide a comprehensive overview of the intricate inflammatory process derived from the immune dysregulation that occurs in COVID-19, discussing the potential that the cytokines and growth factors that constitute the MSC-derived secretome present to treat the disease. Moreover, we revise the latest clinical progress made in the field, discussing the most important findings of the clinical trials conducted to date, which follow 2 different approaches: MSC-based cell therapy or the administration of the secretome by itself, as a cell-free therapy.


Assuntos
COVID-19 , Transplante de Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório , Humanos , COVID-19/terapia , SARS-CoV-2 , Síndrome do Desconforto Respiratório/terapia , Síndrome da Liberação de Citocina
15.
Mater Sci Eng C Mater Biol Appl ; 135: 112695, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35581070

RESUMO

In the present study we developed an injectable, bioactive and degradable hydrogel composed of alginate at 2.5% oxidation degree and calcium-activated platelet rich plasma (PRP) for wound healing applications (PRP-HG-2.5%). The alginate gives mechanical support to the hydrogel while the activated PRP provides growth factors that enhance wound healing and fibrin which creates an adequate microenvironment for cell migration and proliferation. The rheological and mechanical properties of the hydrogel were characterized. Further characterization revealed that PRP-HG-2.5% showed a faster hydrolitic degradation rate than unmodified alginate and a similar platelet derived growth factor (PDGF-BB) release profile. In vitro efficacy studies, carried out in human fibroblasts and keratinocytes, showed that PRP-HG-2.5% was not cytotoxic and that it was able to promote cell adhesion and proliferation. Thereafter, in an in vivo full thickness wound healing study conducted in diabetic mice, no differences were found among PRP-HG-2.5% and its counterpart without PRP, likely due to the xenogeneic origin of the PRP. This hypothesis was validated in vitro, since a cytotoxic effect was observed after human PRP application to mouse fibroblasts. Therefore, PRP-HG-2.5% might be a promising strategy for chronic woundstreatment, although its effectiveness should be evaluated in a more reliable preclinical model.


Assuntos
Diabetes Mellitus Experimental , Plasma Rico em Plaquetas , Alginatos , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Fibrina/metabolismo , Fibrina/farmacologia , Humanos , Hidrogéis/metabolismo , Hidrogéis/farmacologia , Camundongos , Plasma Rico em Plaquetas/metabolismo , Cicatrização
16.
Mater Today Bio ; 15: 100273, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35572855

RESUMO

Epistaxis is one of the most common otorhinolaryngology emergencies worldwide. Although there are currently several treatments available, they present several disadvantages. This, in addition to the increasing social need of being environmentally respectful, led us to investigate whether a sponge-like scaffold (SP-CH) produced from natural by-products of the food industry - soy protein and ß-chitin - can be employed as a nasal pack for the treatment of epistaxis. To evaluate the potential of our material as a nasal pack, it was compared with two of the most commonly used nasal packs in the clinic: a basic gauze and the gold standard Merocel®. Our SP-CH presented great physicochemical and mechanical properties, lost weight in aqueous medium, and could even partially degrade when incubated in blood. It was shown to be both biocompatible and hemocompatible in vitro, clearing up any doubt about its safety. It showed increased blood clotting capacity in vitro, as well as increased capacity to bind both red blood cells and platelets, compared to the standard gauze and Merocel®. Finally, a rat-tail amputation model revealed that our SP-CH could even reduce bleeding time in vivo. This work, carried out from a circular economy approach, demonstrates that a green strategy can be followed to manufacture nasal packs using valorized by-products of the food industry, with equal or even better hemostatic properties than the gold standard in the clinic.

17.
Stem Cell Res Ther ; 13(1): 147, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395929

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) and their extracellular vesicles (MSC-EVs) have demonstrated to elicit immunomodulatory and pro-regenerative properties that are beneficial for the treatment of chronic wounds. Thanks to different mediators, MSC-EVs have shown to play an important role in the proliferation, migration and cell survival of different skin cell populations. However, there is still a big bid to achieve the most effective, suitable and available source of MSC-EVs. METHODS: We isolated, characterized and compared medium-large EVs (m-lEVs) and small EVs (sEVs) obtained from hair follicle-derived MSCs (HF-MSCs) against the gold standard in regenerative medicine, EVs isolated from adipose tissue-derived MSCs (AT-MSCs). RESULTS: We demonstrated that HF-EVs, as well as AT-EVs, expressed typical MSC-EVs markers (CD9, CD44, CD63, CD81 and CD105) among other different functional markers. We showed that both cell types were able to increase human dermal fibroblasts (HDFs) proliferation and migration. Moreover, both MSC-EVs were able to increase angiogenesis in human umbilical vein endothelial cells (HUVECs) and protect HDFs exposed to a hyperglycemic environment from oxidative stress and cytotoxicity. CONCLUSIONS: Taken together, HF-EVs demonstrated to exhibit comparable potential to that of AT-EVs as promising candidates in the treatment of chronic wounds.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Vesículas Extracelulares/metabolismo , Folículo Piloso , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Cicatrização
18.
Fluids Barriers CNS ; 19(1): 22, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35300705

RESUMO

BACKGROUND: Neurodegenerative diseases (NDs) are an accelerating global health problem. Nevertheless, the stronghold of the brain- the blood-brain barrier (BBB) prevents drug penetrance and dwindles effective treatments. Therefore, it is crucial to identify Trojan horse-like drug carriers that can effectively cross the blood-brain barrier and reach the brain tissue. We have previously developed polyunsaturated fatty acids (PUFA)-based nanostructured lipid carriers (NLC), namely DHAH-NLC. These carriers are modulated with BBB-permeating compounds such as chitosan (CS) and trans-activating transcriptional activator (TAT) from HIV-1 that can entrap neurotrophic factors (NTF) serving as nanocarriers for NDs treatment. Moreover, microglia are suggested as a key causative factor of the undergoing neuroinflammation of NDs. In this work, we used in vitro models to investigate whether DHAH-NLCs can enter the brain via the BBB and investigate the therapeutic effect of NTF-containing DHAH-NLC and DHAH-NLC itself on lipopolysaccharide-challenged microglia. METHODS: We employed human induced pluripotent stem cell-derived brain microvascular endothelial cells (BMECs) to capitalize on the in vivo-like TEER of this BBB model and quantitatively assessed the permeability of DHAH-NLCs. We also used the HMC3 microglia cell line to assess the therapeutic effect of NTF-containing DHAH-NLC upon LPS challenge. RESULTS: TAT-functionalized DHAH-NLCs successfully crossed the in vitro BBB model, which exhibited high transendothelial electrical resistance (TEER) values (≈3000 Ω*cm2). Specifically, the TAT-functionalized DHAH-NLCs showed a permeability of up to 0.4% of the dose. Furthermore, using human microglia (HMC3), we demonstrate that DHAH-NLCs successfully counteracted the inflammatory response in our cultures after LPS challenge. Moreover, the encapsulation of glial cell-derived neurotrophic factor (GNDF)-containing DHAH-NLCs (DHAH-NLC-GNDF) activated the Nrf2/HO-1 pathway, suggesting the triggering of the endogenous anti-oxidative system present in microglia. CONCLUSIONS: Overall, this work shows that the TAT-functionalized DHAH-NLCs can cross the BBB, modulate immune responses, and serve as cargo carriers for growth factors; thus, constituting an attractive and promising novel drug delivery approach for the transport of therapeutics through the BBB into the brain.


Assuntos
Barreira Hematoencefálica , Nanopartículas , Fatores de Crescimento Neural , Doenças Neurodegenerativas , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Barreira Hematoencefálica/metabolismo , Ácidos Docosa-Hexaenoicos/química , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lipossomos , Microglia/metabolismo , Fatores de Crescimento Neural/administração & dosagem , Doenças Neurodegenerativas/tratamento farmacológico , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química
19.
Biomedicines ; 10(2)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35203464

RESUMO

Mesenchymal stromal cells (MSCs) have unique immunomodulatory capacities. We investigated hair follicle-derived MSCs (HF-MSCs) from the dermal sheath, which are advantageous as an alternative source because of their relatively painless and minimally risky extraction procedure. These cells expressed neural markers upon isolation and maintained stemness for a minimum of 10 passages. Furthermore, HF-MSCs showed responsiveness to pro-inflammatory environments by expressing type-II major histocompatibility complex antigens (MHC)-II to a lesser extent than adipose tissue-derived MSCs (AT-MSCs). HF-MSCs effectively inhibited the proliferation of peripheral blood mononuclear cells equivalently to AT-MSCs. Additionally, HF-MSCs promoted the induction of CD4+CD25+FOXP3+ regulatory T cells to the same extent as AT-MSCs. Finally, HF-MSCs, more so than AT-MSCs, skewed M0 and M1 macrophages towards M2 phenotypes, with upregulation of typical M2 markers CD163 and CD206 and downregulation of M1 markers such as CD64, CD86, and MHC-II. Thus, we conclude that HF-MSCs are a promising source for immunomodulation.

20.
Eur J Pharm Biopharm ; 172: 31-40, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35074553

RESUMO

The ability of mesenchymal stromal cells (MSCs) to release a plethora of immunomodulatory factors makes them valuable candidates to overcome inflammatory bowel diseases (IBD). However, this cell therapy approach is still limited by major issues derived from nude MSC-administration, including a rapid loss of their immunomodulatory phenotype that impairs factor secretion, low persistence and impossibility to retrieve the cells in case of adverse effects. Here, we designed a licensing hydrogel system to address these limitations and thus, obtain a continuous delivery of bioactive factors. IFNγ-loaded heparin-coated beads were included in injectable in situ crosslinking alginate hydrogels, providing a 3D microenvironment that ensured continuous inflammatory licensing, cell persistence and implant retrievability. Licensing-hydrogel encapsulated human MSCs (hMSCs) were subcutaneously xenotransplanted in an acute mouse model of ulcerative colitis. Results showed that encapsulated hMSCs exerted a delocalized systemic protection, not presenting significant differences to healthy mice in the disease activity index, colon weight/length ratio and histological score. At day 7, cells were easily retrieved and ex vivo assays showed fully viable hMSCs that retained an immunomodulatory phenotype, as they continued secreting factors including PGE2 and Gal-9. Our data demonstrate the capacity of licensing hydrogel-encapsulated hMSCs to limit the in vivo progression of IBD.


Assuntos
Colite Ulcerativa , Células-Tronco Mesenquimais , Animais , Células Cultivadas , Hidrogéis , Imunomodulação , Camundongos , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...