Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsy Res ; 182: 106861, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35364483

RESUMO

Given improvements in computing power, artificial intelligence (AI) with deep learning has emerged as the state-of-the art method for the analysis of medical imaging data and will increasingly be used in the clinical setting. Recent work in epilepsy research has aimed to use AI methods to improve diagnosis, prognosis, and treatment, with the ultimate goal of developing highly accurate and reliable tools to aid clinical decision making. Here, we review how researchers are currently using AI methods in the analysis of neuroimaging data in epilepsy, focusing on challenges unique to each imaging modality with an emphasis on clinical significance. We further provide critical analyses of existing techniques and recommend areas for future work. We call for: (1) a multimodal approach that leverages the strengths of different modalities while compensating for their individual weaknesses, and (2) widespread implementation of generalizability testing of proposed models, a needed step before their introduction into clinical workflows. To achieve both goals, more collaborations among research groups and institutions in this field will be required.


Assuntos
Inteligência Artificial , Epilepsia , Tomada de Decisão Clínica , Epilepsia/diagnóstico por imagem , Humanos
2.
J Proteome Res ; 20(4): 1986-1996, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33514075

RESUMO

The identification of peptide sequences and their post-translational modifications (PTMs) is a crucial step in the analysis of bottom-up proteomics data. The recent development of open modification search (OMS) engines allows virtually all PTMs to be searched for. This not only increases the number of spectra that can be matched to peptides but also greatly advances the understanding of the biological roles of PTMs through the identification, and the thereby facilitated quantification, of peptidoforms (peptide sequences and their potential PTMs). Whereas the benefits of combining results from multiple protein database search engines have been previously established, similar approaches for OMS results have been missing so far. Here we compare and combine results from three different OMS engines, demonstrating an increase in peptide spectrum matches of 8-18%. The unification of search results furthermore allows for the combined downstream processing of search results, including the mapping to potential PTMs. Finally, we test for the ability of OMS engines to identify glycosylated peptides. The implementation of these engines in the Python framework Ursgal facilitates the straightforward application of the OMS with unified parameters and results files, thereby enabling yet unmatched high-throughput, large-scale data analysis.


Assuntos
Algoritmos , Software , Bases de Dados de Proteínas , Processamento de Proteína Pós-Traducional , Proteômica , Ferramenta de Busca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...