Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(11): 6349-6361, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36914428

RESUMO

Ni-based solids are effective catalysts for alkene dimerization, but the nature of active centers and identity and kinetic relevance of bound species and elementary reactions remain speculative and based on organometallic chemistry. Ni centers grafted onto ordered MCM-41 mesopores lead to well-defined monomers that are rendered stable by the presence of an intrapore nonpolar liquid, thus enabling accurate experimental inquiries and indirect evidence for grafted (Ni-OH)+ monomers. Density functional theory (DFT) treatments presented here confirm the plausible involvement of pathways and active centers not previously considered as mediators of high turnover rates for C2-C4 alkenes at cryogenic temperatures. (Ni-OH)+ species act as Lewis acid-base pairs that stabilize C-C coupling transition states by polarizing two alkenes in opposite directions via concerted interactions with the O and H atoms in these pairs. DFT-derived activation barriers for ethene dimerization (59 kJ mol-1) are similar to measured values (46 ± 5 kJ mol-1) and the weak binding of ethene on (Ni-OH)+ is consistent with kinetic trends that require sites to remain essentially bare at subambient temperatures and high alkene pressures (1-15 bar). DFT treatments of classical metallacycle and Cossee-Arlman dimerization routes (Ni+ and Ni2+-H grafted onto Al-MCM-41, respectively) show that such sites bind ethene strongly and lead to saturation coverages, in contradiction with observed kinetic trends. These C-C coupling routes at acid-base pairs in (Ni-OH)+ differ from molecular catalysts in (i) the type of elementary steps; (ii) the nature of active centers; and (iii) their catalytic competence at subambient temperatures without requiring co-catalysts or activators.

2.
J Am Chem Soc ; 143(30): 11582-11594, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34288671

RESUMO

Catalytic routes for upgrading CO2 to CO and hydrocarbons have been studied for decades, and yet the mechanistic details and structure-function relationships that control catalytic performance have remained unresolved. This study elucidates the elementary steps that mediate these reactions and examines them within the context of the established mechanism for CO hydrogenation to resolve the persistent discrepancies and to demonstrate inextricable links between CO2 and CO hydrogenation on dispersed Ru nanoparticles (6-12 nm mean diameter, 573 K). The formation of CH4 from both CO2-H2 and CO-H2 reactants requires the cleavage of strong C≡O bonds in chemisorbed CO, formed as an intermediate in both reactions, via hydrogen-assisted activation pathways. The C═O bonds in CO2 are cleaved via direct interactions with exposed Ru atoms in elementary steps that are shown to be facile by fast isotopic scrambling of C16O2-C18O2-H2 mixtures. Such CO2 activation steps form bound CO molecules and O atoms; the latter are removed via H-addition steps to form H2O. The kinetic hurdles in forming CH4 from CO2 do not reflect the inertness of C═O bonds in CO2 but instead reflect the intermediate formation of CO molecules, which contain stronger C≡O bonds than CO2 and are present at near-saturation coverages during CO2 and CO hydrogenation catalysis. The conclusions presented herein are informed by a combination of spectroscopic, isotopic, and kinetic measurements coupled with the use of analysis methods that account for strong rate inhibition by chemisorbed CO. Such methods enable the assessment of intrinsic reaction rates and are essential to accurately determine the effects of nanoparticle structure and composition on reactivity and selectivity for CO2-H2 reactions.

3.
Chem Commun (Camb) ; 56(54): 7371-7398, 2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32568324

RESUMO

Brønsted acids mediate chemical transformations via proton transfer to bound species and interactions between the conjugate anion and bound cationic intermediates and transition states that are also stabilized by van der Waals forces within voids of molecular dimensions in inorganic hosts. This Feature Article describes the relevant descriptors of reactivity in terms of the properties of acids and molecules that determine their ability to donate and accept protons and to reorganize their respective charges to optimize their interactions at bound states. The deprotonation energy (DPE) of the acids and the protonation energy (Eprot) of the gaseous analogs of bound intermediates and transition states reflect their respective properties as species present at non-interacting distances. These properties accurately describe the reactivity of acids of a given type, such as polyoxometalates (POM) with a given type of addenda atom but different central atoms and heterosilicates, for different families of reactions. They do not fully capture, however, differences among acid types (e.g., Mo and W POM, heterosilicates, mineral acids) for diverse types of chemical transformations (e.g., elimination, isomerization, dimerization, condensation). The incompleteness of such descriptors reflects their inability to describe how protonated molecular species and conjugate anions restructure their respective charges when present as a binding pair at interacting distances. Such interaction energies represent electrostatic forces that depend on charge distributions in the cations and anions and the ability to reorganize the distributions to maximize the interactions. In the case of deprotonation, the electrostatic and charge reorganization components of DPE for various acids solely reflect the ability of the conjugate anion to accept and distribute the negative charge, a characteristic unique of each type of solid acid and specifically of the composition of its extended conjugate anion framework. The energy required to accept and rearrange the positive charge in bound intermediates and transition states reflects, in turn, their respective ability to recover the ionic and covalent components of DPE, the energy required to detach proton from conjugate anions. The DPE components and the recovery fractions together lead to a modified DPE, which captures only the part of DPE that remains unrecovered by the ion-pair interactions at bound intermediates and transition states, as the unifying descriptor for broad families of acids and reactions. The electrostatic and charge reorganization energies involved in these general descriptors are placed in historical context by assessing their connections to the heuristics of hard-soft acid-base displacements. Further development of these concepts requires benchmarking and extension of electrostatic and reorganization components of energies for a more diverse set of reaction types and acid families and advancement of methods for more efficient calculations of electrostatic interactions. Reactivity descriptors must also account for dispersive interactions between host cavities and guest molecules, requiring a framework analogous to the one described here for ion-pair interactions; these dispersive interactions depend on the fit between their shapes and sizes as well as their "structural stiffness" that determines the ability to modify the shapes of molecules and voids to minimize free energy. Entropy considerations and estimates of their dependence on properties of catalysts and molecules are also required for accurately determining Gibbs free energies that ultimately determine reaction rates.

4.
Phys Chem Chem Phys ; 20(23): 15725-15735, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29855638

RESUMO

Density functional theory methods that include dispersive forces are used to show how voids of molecular dimensions enhance reaction rates by the mere confinement of transition states analogous to those involved in homogeneous routes and without requiring specific binding sites or structural defects within confining voids. These van der Waals interactions account for the observed large rate enhancements for NO oxidation in the presence of purely siliceous crystalline frameworks. The minimum free energy paths for NO oxidation within chabazite (CHA) and silicalite (SIL) frameworks involve intermediates similar in stoichiometry, geometry, and kinetic relevance to those involved in the homogeneous route. The termolecular transition state for the kinetically-relevant cis-NOO2NO isomerization to trans-NOO2NO is strongly stabilized by confinement within CHA (by 36.3 kJ mol-1 in enthalpy) and SIL (by 39.2 kJ mol-1); such enthalpic stabilization is compensated, in part, by concomitant entropy losses brought forth by confinement (CHA: 44.9; SIL: 45.3, J mol-1 K-1 at 298 K). These enthalpy and entropy changes upon confinement agree well with those measured and combine to significantly decrease activation free energies and are consistent with the rate enhancements that become larger as temperature decreases because of the more negative apparent activation energies in confined systems compared with homogeneous routes. Calculated free energies of confinement are in quantitative agreement with measured rate enhancements and with their temperature sensitivity. Such quantitative agreements reflect preeminent effects of geometry in determining the van der Waals contributions from contacts between the transition states (TS) and the confining walls and the weak effects of the level of theory on TS geometries. NO oxidation reactions are chosen here to illustrate these remarkable effects of confinement because detailed kinetic analysis of rate data are available, but also because of their critical role in the treatment of combustion effluents and in the synthesis of nitric acid and nitrates. Similar effects are evident from rate enhancements by confinement observed for Diels-Alder and alkyne oligomerization reactions. These reactions also occur in gaseous media at near ambient temperatures, for which enthalpic stabilization upon confinement of their homogeneous transition states becomes the preeminent component of activation free energies.

5.
J Am Chem Soc ; 140(2): 775-782, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29297685

RESUMO

CH3OH dehydrogenation on a metal function occurs in tandem with C-C coupling of HCHO with enolates derived from alkanals or alkanones on acid-base pairs at anatase TiO2 surfaces with very high specificity for nucleophilic attack by enolates on HCHO over larger carbonyl molecules. The measured rate constants for enolate coupling with HCHO are >103-fold larger than for its coupling with acetone. Free energies derived from theoretical treatments of reactions between C2-C4 bound enolates and carbonyls show that such specificity for nucleophilic attack on HCHO reflects smaller entropy losses upon formation of the transition state (TS), instead of enthalpic effects caused by weaker steric effects or the stronger electrophilic character of HCHO compared with larger carbonyls. The easier steric access and higher electrophilicity of the carbonyl C atom of HCHO in C-C coupling with enolates are compensated by a later TS and by stronger van der Waals contacts for the corresponding reactions of the larger carbonyls. The preeminence of entropic effects over enthalpic stabilization reflects the greater structural organization imposed by surfaces on TS structures compared with similar reactions and structures in gaseous or liquid media. Such organization imposes significant entropic penalties that become least consequential for smaller electrophiles, thus enabling highly selective routes for sequential addition of C1 groups at nucleophilic C atoms in co-reactants using HCHO, whether added or formed in situ from CH3OH, as the monomer source. Such entropy-driven specificity is therefore a unique and unrecognized characteristic of reactions catalyzed by surfaces.

6.
J Am Chem Soc ; 139(34): 11789-11802, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28825476

RESUMO

High CO* coverages lead to rates much higher than Langmuirian treatments predict because co-adsorbate interactions destabilize relevant transition states less than their bound precursors. This is shown here by kinetic and spectroscopic data-interpreted by rate equations modified for thermodynamically nonideal surfaces-and by DFT treatments of CO-covered Ru clusters and lattice models that mimic adlayer densification. At conditions (0.01-1 kPa CO; 500-600 K) which create low CO* coverages (0.3-0.8 ML from in situ infrared spectra), turnover rates are accurately described by Langmuirian models. Infrared bands indicate that adlayers nearly saturate and then gradually densify as pressure increases above 1 kPa CO, and rates become increasingly larger than those predicted from Langmuir treatments (15-fold at 25 kPa and 70-fold at 1 MPa CO). These strong rate enhancements are described here by adapting formalisms for reactions in nonideal and nearly incompressible media (liquids, ultrahigh-pressure gases) to handle the strong co-adsorbate interactions within the nearly incompressible CO* adlayer. These approaches show that rates are enhanced by densifying CO* adlayers because CO hydrogenation has a negative activation area (calculated by DFT), analogous to how increasing pressure enhances rates for liquid-phase reactions with negative activation volumes. Without these co-adsorbate effects and the negative activation area of CO activation, Fischer-Tropsch synthesis would not occur at practical rates. These findings and conceptual frameworks accurately treat dense surface adlayers and are relevant in the general treatment of surface catalysis as it is typically practiced at conditions leading to saturation coverages of reactants or products.

7.
Proc Natl Acad Sci U S A ; 114(20): E3900-E3908, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28461504

RESUMO

This study reports the thermodynamics of bound species derived from ethene, propene, n-butene, and isobutene on solid acids with diverse strength and confining voids. Density functional theory (DFT) and kinetic data indicate that covalently bound alkoxides form C-C bonds in the kinetically relevant step for dimerization turnovers on protons within TON (0.57 nm) and MOR (0.67 nm) zeolitic channels and on stronger acids HPW (polyoxometalate clusters on silica). Turnover rates for mixed alkenes give relative alkoxide stabilities; the respective adsorption constants are obtained from in situ infrared spectra. Tertiary alkoxides (from isobutene) within larger voids (MOR, HPW) are more stable than less substituted isomers but are destabilized within smaller concave environments (TON) because framework distortions are required to avoid steric repulsion. Adsorption constants are similar on MOR and HPW for each alkoxide, indicating that binding is insensitive to acid strength for covalently bound species. DFT-derived formation free energies for alkoxides with different framework attachments and backbone length/structure agree with measurements when dispersion forces, which mediate stabilization by confinement in host-guest systems, are considered. Theory reveals previously unrecognized framework distortions that balance the C-O bond lengths required for covalency with host-guest distances that maximize van der Waals contacts. These distortions, reported here as changes in O-atom locations and dihedral angles, become stronger for larger, more substituted alkoxides. The thermodynamic properties reported here for alkoxides and acid hosts differing in size and conjugate-anion stability are benchmarked against DFT-derived free energies; their details are essential to design host-guest pairs that direct alkoxide species toward specific products.

12.
Faraday Discuss ; 197: 9-39, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28300265

RESUMO

This account illustrates concepts in chemical kinetics underpinned by the formalism of transition state theory using catalytic processes that enable the synthesis of molecules suitable as fuels from C1 and oxygenate reactants. Such feedstocks provide an essential bridge towards a carbon-free energy future, but their volatility and low energy density require the formation of new C-C bonds and the removal of oxygen. These transformations are described here through recent advances in our understanding of the mechanisms and site requirements in catalysis by surfaces, with emphasis on enabling concepts that tackle ubiquitous reactivity and selectivity challenges. The hurdles in forming the first C-C bond from C1 molecules are illustrated by the oxidative coupling of methane, in which surface O-atoms form OH radicals from O2 and H2O molecules. These gaseous OH species act as strong H-abstractors and activate C-H bonds with earlier transition states than oxide surfaces, thus rendering activation rates less sensitive to the weaker C-H bonds in larger alkane products than in CH4 reactants. Anhydrous carbonylation of dimethyl ether forms a single C-C bond on protons residing within inorganic voids that preferentially stabilize the kinetically-relevant transition state through van der Waals interactions that compensate for the weak CO nucleophile. Similar solvation effects, but by intrapore liquids instead of inorganic hosts, also become evident as alkenes condense within MCM-41 channels containing isolated Ni2+ active sites during dimerization reactions. Intrapore liquids preferentially stabilize transition states for C-C bond formation and product desorption, leading to unprecedented reactivity and site stability at sub-ambient temperatures and to 1-alkene dimer selectivities previously achieved only on organometallic systems with co-catalysts or activators. C1 homologation selectively forms C4 and C7 chains with a specific backbone (isobutane, triptane) on solid acids, because of methylative growth and hydride transfer rates that reflect the stability of their carbenium ion transition states and are unperturbed by side reactions at low temperatures. Aldol condensation of carbonyl compounds and ketonization of carboxylic acids form new C-C bonds concurrently with O-removal. These reactions involve analogous elementary steps and occur on acid-base site pairs on TiO2 and ZrO2 catalysts. Condensations are limited by α-H abstraction to form enolates via concerted interactions with predominantly unoccupied acid-base pairs. Ketonization is mediated instead by C-C bond formation between hydroxy-enolates and monodentate carboxylates on site pairs nearly saturated by carboxylates. Both reactions are rendered practical through bifunctional strategies, in which H2 and a Cu catalyst function scavenge unreactive intermediates, prevent sequential reactions and concomitant deactivation, and remove thermodynamic bottlenecks. Alkanal-alkene Prins condensations on solid acids occur concurrently with alkene dimerization and form molecules with new C-C bonds as skeletal isomers unattainable by other routes. Their respective transition states are of similar size, leading to selectivities that cannot sense the presence of a confining host. Prins condensation reactions benefit from weaker acid sites because their transition states are less charged than those for oligomerization and consequently less sensitive to conjugate anions that become less stable as acids weaken.

13.
Faraday Discuss ; 197: 59-86, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28332665

RESUMO

Condensation and esterification are important catalytic routes in the conversion of polyols and oxygenates derived from biomass to fuels and chemical intermediates. Previous experimental studies show that alkanal, alkanol and hydrogen mixtures equilibrate over Cu/SiO2 and form surface alkoxides and alkanals that subsequently promote condensation and esterification reactions. First-principle density functional theory (DFT) calculations were carried out herein to elucidate the elementary paths and the corresponding energetics for the interconversion of propanal + H2 to propanol and the subsequent C-C and C-O bond formation paths involved in aldol condensation and esterification of these mixtures over model Cu surfaces. Propanal and hydrogen readily equilibrate with propanol via C-H and O-H addition steps to form surface propoxide intermediates and equilibrated propanal/propanol mixtures. Surface propoxides readily form via low energy paths involving a hydrogen addition to the electrophilic carbon center of the carbonyl of propanal or via a proton transfer from an adsorbed propanol to a vicinal propanal. The resulting propoxide withdraws electron density from the surface and behaves as a base catalyzing the activation of propanal and subsequent esterification and condensation reactions. These basic propoxides can readily abstract the acidic Cα-H of propanal to produce the CH3CH(-)CH2O* enolate, thus initiating aldol condensation. The enolate can subsequently react with a second adsorbed propanal to form a C-C bond and a ß-alkoxide alkanal intermediate. The ß-alkoxide alkanal can subsequently undergo facile hydride transfer to form the 2-formyl-3-pentanone intermediate that decarbonylates to give the 3-pentanone product. Cu is unique in that it rapidly catalyzes the decarbonylation of the C2n intermediates to form C2n-1 3-pentanone as the major product with very small yields of C2n products. This is likely due to the absence of Brønsted acid sites, present on metal oxide catalysts, that rapidly catalyze dehydration of the hemiacetal or hemiacetalate over decarbonylation. The basic surface propoxide that forms on Cu can also attack the carbonyl of a surface propanal to form propyl propionate. Theoretical results indicate that the rates for both aldol condensation and esterification are controlled by reactions between surface propoxide and propanal intermediates. In the condensation reaction, the alkoxide abstracts the weakly acidic hydrogen of the Cα-H of the adsorbed alkanal to form the surface enolate whereas in the esterification reaction the alkoxide nucleophilically attacks the carbonyl group of a vicinal bound alkanal. As both condensation and esterification involve reactions between the same two species in the rate-limiting step, they result in the same rate expression which is consistent with experimental results. The theoretical results indicate that the barriers between condensation and esterification are within 3 kJ mol-1 of one another with esterification being slightly more favored. Experimental results also report small differences in the activation barriers but suggest that condensation is slightly preferred.

14.
J Am Chem Soc ; 137(37): 11984-95, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26356575

RESUMO

This study combines theory and experiment to determine the kinetically relevant steps and site requirements for deoxygenation of alkanols and alkanals. These reactants deoxygenate predominantly via decarbonylation (C-C cleavage) instead of C-O hydrogenolysis on Ir, Pt, and Ru, leading to strong inhibition effects by chemisorbed CO (CO*). C-C cleavage occurs via unsaturated species formed in sequential quasi-equilibrated dehydrogenation steps, which replace C-H with C-metal bonds, resulting in strong inhibition by H2, also observed in alkane hydrogenolysis. C-C cleavage occurs in oxygenates only at locations vicinal to the C═O group in RCCO* intermediates, because such adjacency weakens C-C bonds, which also leads to much lower activation enthalpies for oxygenates than hydrocarbons. C-O hydrogenolysis rates are independent of H2 pressure and limited by H*-assisted C-O cleavage in RCHOH* intermediates on surfaces with significant coverages of CO* formed in decarbonylation events. The ratio of C-O hydrogenolysis to decarbonylation rates increased almost 100-fold as the Ir cluster size increased from 0.7 to 7 nm; these trends reflect C-O hydrogenolysis reactions favored on terrace sites, while C-C hydrogenolysis prefers sites with lower coordination, because of the relative size of their transition states and the crowded nature of CO*-covered surfaces. C-O hydrogenolysis becomes the preferred deoxygenation route on Cu-based catalysts, thus avoiding CO inhibition effects. The relative rates of C-O and C-C cleavage on these metals depend on their relative ability to bind C atoms, because C-C cleavage transitions states require an additional M-C attachment.

15.
Acc Chem Res ; 48(5): 1254-62, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25921328

RESUMO

Dissociation of the strong bonds in O2, NO, CO, and N2 often involves large activation barriers on low-index planes of metal particles used as catalysts. These kinetic hurdles reflect the noble nature of some metals (O2 activation on Au), the high coverages of co-reactants (O2 activation during CO oxidation on Pt), or the strength of the chemical bonds (NO on Pt, CO and N2 on Ru). High barriers for direct dissociations from density functional theory (DFT) have led to a consensus that "defects", consisting of low-coordination exposed atoms, are required to cleave such bonds, as calculated by theory and experiments for model surfaces at low coverages. Such sites, however, bind intermediates strongly, rendering them unreactive at the high coverages prevalent during catalysis. Such site requirements are also at odds with turnover rates that often depend weakly on cluster size or are actually higher on larger clusters, even though defects, such as corners and edges, are most abundant on small clusters. This Account illustrates how these apparent inconsistencies are resolved through activations of strong bonds assisted by co-adsorbates on crowded low-index surfaces. Catalytic oxidations occur on Au clusters at low temperatures in spite of large activation barriers for O2 dissociation on Au(111) surfaces, leading to proposals that O2 activation requires low-coordination Au atoms or Au-support interfaces. When H2O is present, however, O2 dissociation proceeds with low barriers on Au(111) because chemisorbed peroxides (*OOH* and *HOOH*) form and weaken O-O bonds before cleavage, thus allowing activation on low-index planes. DFT-derived O2 dissociation barriers are much lower on bare Pt surfaces, but such surfaces are nearly saturated with CO* during CO oxidation. A dearth of vacant sites causes O2* to react with CO* to form *OOCO* intermediates that undergo O-O cleavage. NO-H2 reactions occur on Pt clusters saturated with NO* and H*; direct NO* dissociation requires vacant sites that are scarce on such surfaces. N-O bonds cleave instead via H*-assistance to form *HNOH* intermediates, with barriers much lower than for direct NO* dissociation. CO hydrogenation on Co and Ru occurs on crowded surfaces saturated with CO*; rates increase with increasing Co and Ru cluster size, indicating that low-index surfaces on large clusters can activate CO*. Direct CO*dissociation, however, occurs with high activation barriers on low-index Co and Ru surfaces, and even on defect sites (step-edge, corner sites) at high CO* coverages. CO* dissociation proceeds instead with H*-assistance to form *HCOH* species that cleave C-O bonds with lower barriers than direct CO* dissociation, irrespective of surface coordination. H2O increases CO activation rates by assisting H-additions to form *HCOH*, as in the case of peroxide formation in Au-catalyzed oxidations. N2 dissociation steps in NH3 synthesis on Ru and Fe are thought to also require defect sites; yet, barriers on Ru(0001) indicate that H*-assisted N2 activation - unlike O2, CO, and NO - is not significantly more facile than direct N2 dissociation, suggesting that defects and low-index planes may both contribute to NH3 synthesis rates. The activation of strong chemical bonds often occurs via bimolecular reactions. These steps weaken such bonds before cleavage on crowded low-index surfaces, thus avoiding the ubiquitous kinetic hurdles of direct dissociations without requiring defect sites.

16.
J Am Chem Soc ; 136(43): 15280-90, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25314634

RESUMO

The encapsulation of metal clusters (Pt, Ru, Rh) within MFI was achieved by exchanging cationic metal precursors into a parent zeolite (BEA, FAU), reducing them with H2 to form metal clusters, and transforming these zeolites into daughter structures of higher framework density (MFI) under hydrothermal conditions. These transformations required MFI seeds or organic templates for FAU parent zeolites, but not for BEA, and occurred with the retention of encapsulated clusters. Clusters uniform in size (1.3-1.7 nm) and exposing clean and accessible surfaces formed in BEA and FAU zeolites; their size remained essentially unchanged upon transformation into MFI. Encapsulation selectivities, determined from the relative hydrogenation rates of small (toluene) and large (alkyl arenes) molecules and defined as the ratio of the surface areas of all the clusters in the sample to that of external clusters, were very high (8.1-40.9) for both parent and daughter zeolites. Encapsulation into MFI via direct hydrothermal syntheses was unsuccessful because metal precursors precipitated prematurely at the pH and temperatures required for MFI synthesis. Delayed introduction of metal precursors and F(-) (instead of OH(-)) as the mineralizing agent in hydrothermal syntheses increased encapsulation selectivities, but they remained lower than those achieved via interzeolite transformations. These interconversions provide a general and robust strategy for encapsulation of metals when precursors can be introduced via exchange into a zeolite that can be transformed into target daughter zeolites with higher framework densities, whether spontaneously or by using seeds or structure-directing agents (SDA).

17.
J Am Chem Soc ; 136(43): 15229-47, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25333244

RESUMO

Reactivity descriptors describe catalyst properties that determine the stability of kinetically relevant transition states and adsorbed intermediates. Theoretical descriptors, such as deprotonation energies (DPE), rigorously account for Brønsted acid strength for catalytic solids with known structure. Here, mechanistic interpretations of methanol dehydration turnover rates are used to assess how charge reorganization (covalency) and electrostatic interactions determine DPE and how such interactions are recovered when intermediates and transition states interact with the conjugate anion in W and Mo polyoxometalate (POM) clusters and gaseous mineral acids. Turnover rates are lower and kinetically relevant species are less stable on Mo than W POM clusters with similar acid strength, and such species are more stable on mineral acids than that predicted from W-POM DPE-reactivity trends, indicating that DPE and acid strength are essential but incomplete reactivity descriptors. Born-Haber thermochemical cycles indicate that these differences reflect more effective charge reorganization upon deprotonation of Mo than W POM clusters and the much weaker reorganization in mineral acids. Such covalency is disrupted upon deprotonation but cannot be recovered fully upon formation of ion pairs at transition states. Predictive descriptors of reactivity for general classes of acids thus require separate assessments of the covalent and ionic DPE components. Here, we describe methods to estimate electrostatic interactions, which, taken together with energies derived from density functional theory, give the covalent and ionic energy components of protons, intermediates, and transition states. In doing so, we provide a framework to predict the reactive properties of protons for chemical reactions mediated by ion-pair transition states.

18.
Angew Chem Int Ed Engl ; 53(45): 12177-81, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25212869

RESUMO

Mechanistic interpretations of rates and in situ IR spectra combined with density functionals that account for van der Waals interactions of intermediates and transition states within confining voids show that associative routes mediate the formation of dimethyl ether from methanol on zeolitic acids at the temperatures and pressures of practical dehydration catalysis. Methoxy-mediated dissociative routes become prevalent at higher temperatures and lower pressures, because they involve smaller transition states with higher enthalpy, but also higher entropy, than those in associative routes. These enthalpy-entropy trade-offs merely reflect the intervening role of temperature in activation free energies and the prevalence of more complex transition states at low temperatures and high pressures. This work provides a foundation for further inquiry into the contributions of H-bonded methanol and methoxy species in homologation and hydrocarbon synthesis reactions from methanol.

19.
J Am Chem Soc ; 136(27): 9664-76, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24961991

RESUMO

Methyl substituents at C-C bonds influence hydrogenolysis rates and selectivities of acyclic and cyclic C2-C8 alkanes on Ir, Rh, Ru, and Pt catalysts. C-C cleavage transition states form via equilibrated dehydrogenation steps that replace several C-H bonds with C-metal bonds, desorb H atoms (H*) from saturated surfaces, and form λ H2(g) molecules. Activation enthalpies (ΔH(‡)) and entropies (ΔS(‡)) and λ values for (3)C-(x)C cleavage are larger than for (2)C-(2)C or (2)C-(1)C bonds, irrespective of the composition of metal clusters or the cyclic/acyclic structure of the reactants. (3)C-(x)C bonds cleave through α,ß,γ- or α,ß,γ,δ-bound transition states, as indicated by the agreement between measured activation entropies and those estimated for such structures using statistical mechanics. In contrast, less substituted C-C bonds involve α,ß-bound species with each C atom bound to several surface atoms. These α,ß configurations weaken C-C bonds through back-donation to antibonding orbitals, but such configurations cannot form with (3)C atoms, which have one C-H bond and thus can form only one C-M bond. (3)C-(x)C cleavage involves attachment of other C atoms, which requires endothermic C-H activation and H* desorption steps that lead to larger ΔH(‡) values but also larger ΔS(‡) values (by forming more H2(g)) than for (2)C-(2)C and (2)C-(1)C bonds, irrespective of alkane size (C2-C8) or cyclic/acyclic structure. These data and their mechanistic interpretation indicate that low temperatures and high H2 pressures favor cleavage of less substituted C-C bonds and form more highly branched products from cyclic and acyclic alkanes. Such interpretations and catalytic consequences of substitution seem also relevant to C-X cleavage (X = S, N, O) in desulfurization, denitrogenation, and deoxygenation reactions.

20.
J Am Chem Soc ; 135(49): 18586-99, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24266427

RESUMO

Statistical mechanics and transition state (TS) theory describe rates and selectivities of C-C bond cleavage in C2-C10 n-alkanes on metal catalysts and provide a general description for the hydrogenolysis of hydrocarbons. Mechanistic interpretation shows the dominant role of entropy, over enthalpy, in determining the location and rate of C-C bond cleavage. Ir, Rh, and Pt clusters cleave C-C bonds at rates proportional to coverages of intermediates derived by removing 3-4 H-atoms from n-alkanes. Rate constants for C-C cleavage reflect large activation enthalpies (ΔH(‡), 217-257 kJ mol(-1)) that are independent of chain length and C-C bond location in C4+ n-alkanes. C-C bonds cleave because of large, positive activation entropies (ΔS(‡), 164-259 J mol(-1) K(-1)) provided by H2 that forms with TS. Kinetic and independent spectroscopic evidence for the composition and structure of these TS give accurate estimates of ΔS(‡) for cleavage at each C-C bond. Large differences between rate constants for ethane and n-decane (~10(8)) reflect an increase in the entropy of gaseous alkanes retained at the TS. The location of C-C bond cleavage depends solely on the rotational entropies of alkyl chains attached to the cleaved C-C bond, which depend on their chain length. Such entropy considerations account for the ubiquitous, but previously unexplained, preference for cleaving nonterminal C-C bonds in n-alkanes. This mechanistic analysis and thermodynamic treatment illustrates the continued utility of such approaches even for hydrogenolysis reactions, with complexity seemingly beyond the reach of classical treatments, and applies to catalytic clusters beyond those reported here (0.6-2.7 nm; Ir, Rh, Pt).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...