Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496583

RESUMO

Epigenome editing with DNA-targeting technologies such as CRISPR-dCas9 can be used to dissect gene regulatory mechanisms and potentially treat associated disorders. For example, Prader-Willi Syndrome (PWS) is caused by loss of paternally expressed imprinted genes on chromosome 15q11.2-q13.3, although the maternal allele is intact but epigenetically silenced. Using CRISPR repression and activation screens in human induced pluripotent stem cells (iPSCs), we identified genomic elements that control expression of the PWS gene SNRPN from the paternal and maternal chromosomes. We showed that either targeted transcriptional activation or DNA demethylation can activate the silenced maternal SNRPN and downstream PWS transcripts. However, these two approaches function at unique regions, preferentially activating different transcript variants and involving distinct epigenetic reprogramming mechanisms. Remarkably, transient expression of the targeted demethylase leads to stable, long-term maternal SNRPN expression in PWS iPSCs. This work uncovers targeted epigenetic manipulations to reprogram a disease-associated imprinted locus and suggests possible therapeutic interventions.

2.
ACS Nano ; 16(4): 5660-5671, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35357116

RESUMO

Programmable control of gene expression via nuclease-null Cas9 fusion proteins has enabled the engineering of cellular behaviors. Here, both transcriptional and epigenetic gene activation via synthetic mRNA and lipid nanoparticle delivery was demonstrated in vivo. These highly efficient delivery strategies resulted in high levels of activation in multiple tissues. Finally, we demonstrate durable gene activation in vivo via transient delivery of a single dose of a gene activator that combines VP64, p65, and HSF1 with a SWI/SNF chromatin remodeling complex component SS18, representing an important step toward gene-activation-based therapeutics. This induced sustained gene activation could be inhibited via mRNA-encoded AcrIIA4, further improving the safety profile of this approach.


Assuntos
Sistemas CRISPR-Cas , Lipossomos , Ativação Transcricional , RNA Mensageiro/genética , Proteína 9 Associada à CRISPR/genética
3.
Mol Cell ; 77(1): 51-66.e8, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31784357

RESUMO

Spatially and functionally distinct domains of heterochromatin and euchromatin play important roles in the maintenance of chromosome stability and regulation of gene expression, but a comprehensive knowledge of their composition is lacking. Here, we develop a strategy for the isolation of native Schizosaccharomyces pombe heterochromatin and euchromatin fragments and analyze their composition by using quantitative mass spectrometry. The shared and euchromatin-specific proteomes contain proteins involved in DNA and chromatin metabolism and in transcription, respectively. The heterochromatin-specific proteome includes all proteins with known roles in heterochromatin formation and, in addition, is enriched for subsets of nucleoporins and inner nuclear membrane (INM) proteins, which associate with different chromatin domains. While the INM proteins are required for the integrity of the nucleolus, containing ribosomal DNA repeats, the nucleoporins are required for aggregation of heterochromatic foci and epigenetic inheritance. The results provide a comprehensive picture of heterochromatin-associated proteins and suggest a role for specific nucleoporins in heterochromatin function.


Assuntos
Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/metabolismo , Heterocromatina/metabolismo , DNA Ribossômico/metabolismo , Epigênese Genética/fisiologia , Eucromatina/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteômica/métodos , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcrição Gênica/fisiologia
4.
Nature ; 560(7719): 504-508, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30051891

RESUMO

Histone H3 lysine 9 methylation (H3K9me) mediates heterochromatic gene silencing and is important for genome stability and the regulation of gene expression1-4. The establishment and epigenetic maintenance of heterochromatin involve the recruitment of H3K9 methyltransferases to specific sites on DNA, followed by the recognition of pre-existing H3K9me by the methyltransferase and methylation of proximal histone H35-11. This positive feedback loop must be tightly regulated to prevent deleterious epigenetic gene silencing. Extrinsic anti-silencing mechanisms involving histone demethylation or boundary elements help to limit the spread of inappropriate H3K9me12-15. However, how H3K9 methyltransferase activity is locally restricted or prevented from initiating random H3K9me-which would lead to aberrant gene silencing and epigenetic instability-is not fully understood. Here we reveal an autoinhibited conformation in the conserved H3K9 methyltransferase Clr4 (also known as Suv39h) of the fission yeast Schizosaccharomyces pombe that has a critical role in preventing aberrant heterochromatin formation. Biochemical and X-ray crystallographic data show that an internal loop in Clr4 inhibits the catalytic activity of this enzyme by blocking the histone H3K9 substrate-binding pocket, and that automethylation of specific lysines in this loop promotes a conformational switch that enhances the H3K9me activity of Clr4. Mutations that are predicted to disrupt this regulation lead to aberrant H3K9me, loss of heterochromatin domains and inhibition of growth, demonstrating the importance of the intrinsic inhibition and auto-activation of Clr4 in regulating the deposition of H3K9me and in preventing epigenetic instability. Conservation of the Clr4 autoregulatory loop in other H3K9 methyltransferases and the automethylation of a corresponding lysine in the human SUV39H2 homologue16 suggest that the mechanism described here is broadly conserved.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Epigênese Genética , Histona Metiltransferases/química , Histona Metiltransferases/metabolismo , Histonas/metabolismo , Metiltransferases/química , Metiltransferases/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Evolução Molecular , Inativação Gênica , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Humanos , Metilação , Conformação Proteica
5.
Elife ; 62017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28760198

RESUMO

Some RNAs in mammalian cells can help to silence the DNA they are transcribed from.


Assuntos
Inativação Gênica , Heterocromatina , Animais , DNA , Regulação da Expressão Gênica , RNA
6.
Nature ; 547(7664): 463-467, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28682306

RESUMO

Heterochromatic DNA domains have important roles in the regulation of gene expression and maintenance of genome stability by silencing repetitive DNA elements and transposons. From fission yeast to mammals, heterochromatin assembly at DNA repeats involves the activity of small noncoding RNAs (sRNAs) associated with the RNA interference (RNAi) pathway. Typically, sRNAs, originating from long noncoding RNAs, guide Argonaute-containing effector complexes to complementary nascent RNAs to initiate histone H3 lysine 9 di- and trimethylation (H3K9me2 and H3K9me3, respectively) and the formation of heterochromatin. H3K9me is in turn required for the recruitment of RNAi to chromatin to promote the amplification of sRNA. Yet, how heterochromatin formation, which silences transcription, can proceed by a co-transcriptional mechanism that also promotes sRNA generation remains paradoxical. Here, using Clr4, the fission yeast Schizosaccharomyces pombe homologue of mammalian SUV39H H3K9 methyltransferases, we design active-site mutations that block H3K9me3, but allow H3K9me2 catalysis. We show that H3K9me2 defines a functionally distinct heterochromatin state that is sufficient for RNAi-dependent co-transcriptional gene silencing at pericentromeric DNA repeats. Unlike H3K9me3 domains, which are transcriptionally silent, H3K9me2 domains are transcriptionally active, contain modifications associated with euchromatic transcription, and couple RNAi-mediated transcript degradation to the establishment of H3K9me domains. The two H3K9me states recruit reader proteins with different efficiencies, explaining their different downstream silencing functions. Furthermore, the transition from H3K9me2 to H3K9me3 is required for RNAi-independent epigenetic inheritance of H3K9me domains. Our findings demonstrate that H3K9me2 and H3K9me3 define functionally distinct chromatin states and uncover a mechanism for the formation of transcriptionally permissive heterochromatin that is compatible with its broadly conserved role in sRNA-mediated genome defence.


Assuntos
Inativação Gênica , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/química , Histonas/metabolismo , Interferência de RNA , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Inativação Gênica/efeitos dos fármacos , Heterocromatina/química , Histona-Lisina N-Metiltransferase , Ácidos Hidroxâmicos/farmacologia , Metilação/efeitos dos fármacos , Metiltransferases/metabolismo , Mutação , Proteínas Repressoras/metabolismo , Schizosaccharomyces/efeitos dos fármacos , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcrição Gênica/efeitos dos fármacos
7.
Biochimie ; 135: 83-88, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28143796

RESUMO

In fission yeast, the catalytic activity of the protein lysine methyltransferase (PKMT) Clr4, the sole homolog of the mammalian SUV39H1 and SUV39H2 enzymes, majorly contributes to the formation of heterochromatin. The enzyme introduces histone 3 lysine 9 (H3K9) di- and tri-methylation, a central heterochromatic histone modification, and later it was also found to methylate the Mlo3 protein, which has a role in heterochromatin formation as well. Herein, we have investigated the substrate specificity of Clr4 using custom made mutational scanning peptide arrays. Our data show, that Clr4 recognizes an RK core motif, showing high preference for R8. In addition, it exhibits specific contacts at the S10, T11, G12 and G13 positions of the H3 peptide recognizing an R-K-SKRT-TCS-G sequence. Based on the specificity profile and in vitro methyltransferase assay targeted searches, 11 putative methylation sites in S. pombe proteins were identified from reported Clr4 interacting proteins including Mlo3. Peptide methylation was observed on Mlo3 and 7 novel target sites with strongest methylation signals on Spbc28F2.11 (HMG box-containing protein) at lysine 292 and Hrp3 (Chromodomain ATP-dep DNA helicase) at lysine 89. These data suggest that Clr4 has additional methylation substrates and it will be important to study the biological function of these novel methylation events. Furthermore, the specificity profile of Clr4 has been used to develop a quantitative method to compare and cluster specificity profiles of PKMTs. It shows that the specificity profile of Clr4 is most similar to that of the SUV39H2 enzyme, one of its human homologs. This approach will be helpful in the comparison of the recognition profiles of other families of PKMTs as well.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Metiltransferases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , Histona-Lisina N-Metiltransferase , Metilação , Metiltransferases/genética , Processamento de Proteína Pós-Traducional , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/genética , Especificidade por Substrato
8.
Methods Mol Biol ; 1505: 195-213, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27826866

RESUMO

Chromatin immunoprecipitation (ChIP) is a valuable technique for localizing proteins of interest to specific genomic sites and determining the relative abundance of these proteins at these sites. The ChIP method entails chemical cross-linking of proteins to genomic DNA, isolation of protein-DNA conjugates, and purification of DNA from conjugates. Real-time polymerase chain reactions are used to identify and quantify isolated genomic sequences. Here we describe how to localize yeast proteins to gene sequences residing within the nucleolus, i.e., ribosomal DNA (rDNA).


Assuntos
Imunoprecipitação da Cromatina/métodos , Cromatina/metabolismo , DNA Ribossômico/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Técnicas de Cultura de Células/métodos , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/genética , Reagentes de Ligações Cruzadas/química , DNA Ribossômico/análise , DNA Ribossômico/genética , Formaldeído/química , Genoma Fúngico , Proteínas Nucleares/análise , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real/métodos , Proteínas Repressoras/análise , Proteínas Repressoras/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/análise , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/análise , Sirtuína 2/genética , Sirtuína 2/metabolismo
9.
Elife ; 52016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27835568

RESUMO

Heterochromatin is a conserved feature of eukaryotic chromosomes with central roles in regulation of gene expression and maintenance of genome stability. Heterochromatin formation involves spreading of chromatin-modifying factors away from initiation points over large DNA domains by poorly understood mechanisms. In Saccharomyces cerevisiae, heterochromatin formation requires the SIR complex, which contains subunits with histone-modifying, histone-binding, and self-association activities. Here, we analyze binding of the Sir proteins to reconstituted mono-, di-, tri-, and tetra-nucleosomal chromatin templates and show that key Sir-Sir interactions bridge only sites on different nucleosomes but not sites on the same nucleosome, and are therefore 'interrupted' with respect to sites on the same nucleosome. We observe maximal binding affinity and cooperativity to unmodified di-nucleosomes and propose that nucleosome pairs bearing unmodified histone H4-lysine16 and H3-lysine79 form the fundamental units of Sir chromatin binding and that cooperative binding requiring two appropriately modified nucleosomes mediates selective Sir recruitment and spreading.


Assuntos
Heterocromatina/metabolismo , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo
10.
Mol Cell ; 63(2): 191-205, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27397687

RESUMO

Small-RNA (sRNA)-guided transcriptional gene silencing by Argonaute (Ago)-containing complexes is fundamental to genome integrity and epigenetic inheritance. The RNA cleavage ("Slicer") activity of Argonaute has been implicated in both sRNA maturation and target RNA cleavage. Typically, Argonaute slices and releases the passenger strand of duplex sRNA to generate active silencing complexes, but it remains unclear whether slicing of target nascent RNAs, or other RNAi components, also contributes to downstream transcriptional silencing. Here, we develop a strategy for loading the fission yeast Ago1 with a single-stranded sRNA guide, which bypasses the requirement for slicer activity in generation of active silencing complexes. We show that slicer-defective Ago1 can mediate secondary sRNA generation, H3K9 methylation, and silencing similar to or better than wild-type and associates with chromatin more efficiently. The results define an ancient and minimal sRNA-mediated chromatin silencing mechanism, which resembles the germline-specific sRNA-dependent transcriptional silencing pathways in Drosophila and mammals.


Assuntos
Proteínas Argonautas/metabolismo , Montagem e Desmontagem da Cromatina , Heterocromatina/metabolismo , Interferência de RNA , RNA Fúngico/metabolismo , RNA Interferente Pequeno/biossíntese , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas Argonautas/genética , Metilação de DNA , Endorribonucleases/genética , Endorribonucleases/metabolismo , Regulação Fúngica da Expressão Gênica , Histonas/metabolismo , RNA Fúngico/genética , RNA Interferente Pequeno/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Transcrição Gênica
11.
Mol Cell ; 53(2): 262-76, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24374313

RESUMO

Endogenous small interfering RNAs (siRNAs) and other classes of small RNA provide the specificity signals for silencing of transposons and repeated DNA elements at the posttranscriptional and transcriptional levels. However, the determinants that define an siRNA-producing region or control the silencing function of siRNAs are poorly understood. Here we show that convergent antisense transcription and availability of the Dicer ribonuclease are the key determinants for primary siRNA generation. Surprisingly, Dicer makes dual contributions to heterochromatin formation, promoting histone H3 lysine 9 methylation independently of its catalytic activity, in addition to its well-known role in catalyzing siRNA generation. Furthermore, sequences in the 3' UTR of an mRNA-coding gene inhibit the ability of siRNAs to promote heterochromatin formation, providing another layer of control that prevents the silencing of protein-coding RNAs. Our results reveal distinct mechanisms that limit siRNA generation to centromeric DNA repeats and prevent spurious siRNA-mediated silencing at euchromatic loci.


Assuntos
Heterocromatina/metabolismo , RNA Interferente Pequeno/fisiologia , Schizosaccharomyces/genética , Endorribonucleases/metabolismo , Endorribonucleases/fisiologia , Regulação da Expressão Gênica , Histonas/metabolismo , Metilação , Poliadenilação , Sinais de Poliadenilação na Ponta 3' do RNA , Interferência de RNA , Processamento Pós-Transcricional do RNA , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/metabolismo , Ribonuclease III/metabolismo , Ribonuclease III/fisiologia , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia
12.
Structure ; 20(6): 1007-18, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22560733

RESUMO

Polyadenylation regulation and efficient nuclear export of mature mRNPs both require the polyadenosine-RNA-binding protein, Nab2, which contains seven CCCH Zn fingers. We describe here the solution structure of fingers 5-7, which are necessary and sufficient for high-affinity polyadenosine-RNA binding, and identify key residues involved. These Zn fingers form a single structural unit. Structural coherence is lost in the RNA-binding compromised Nab2-C437S mutant, which also suppresses the rat8-2 allele of RNA helicase Dbp5. Structure-guided Nab2 variants indicate that dbp5(rat8-2) suppression is more closely linked to hyperadenylation and suppression of mutant alleles of the nuclear RNA export adaptor, Yra1, than to affinity for polyadenosine-RNA. These results indicate that, in addition to modulating polyA tail length, Nab2 has an unanticipated function associated with generating export-competent mRNPs, and that changes within fingers 5-7 lead to suboptimal assembly of mRNP export complexes that are more easily disassembled by Dbp5 upon reaching the cytoplasm.


Assuntos
Transporte Ativo do Núcleo Celular , Adenosina/química , Proteínas de Transporte Nucleocitoplasmático/química , Polímeros/química , Transporte de RNA , RNA Mensageiro/química , Proteínas de Ligação a RNA/química , Proteínas de Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência Conservada , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Propriedades de Superfície , Termodinâmica , Dedos de Zinco
13.
EMBO Rep ; 12(6): 587-93, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21525956

RESUMO

Telomeric repeat-containing RNA (TERRA) has been implicated in the control of heterochromatin and telomerase. We demonstrate that yeast TERRA is regulated by telomere-binding proteins in a chromosome-end-specific manner that is dependent on subtelomeric repetitive DNA elements. At telomeres that contain only X-elements, the Rap1 carboxy-terminal domain recruits the Sir2/3/4 and Rif1/2 complexes to repress transcription in addition to promoting Rat1-nuclease-dependent TERRA degradation. At telomeres that contain Y' elements, however, Rap1 represses TERRA through recruitment of Rif1 and Rif2. Our work emphasizes the importance of subtelomeric DNA in the control of telomeric protein composition and telomere transcription.


Assuntos
Regulação Fúngica da Expressão Gênica , Sequências Repetitivas de Ácido Nucleico/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/metabolismo , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Mutação/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Complexo Shelterina , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética
14.
Genes Dev ; 24(17): 1927-38, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20810649

RESUMO

The evolutionarily conserved mRNA export receptor Mex67/NXF1 associates with mRNAs through its adaptor, Yra1/REF, allowing mRNA ribonucleoprotein (mRNP) exit through nuclear pores. However, alternate adaptors should exist, since Yra1 is dispensable for mRNA export in Drosophila and Caenorhabditis elegans. Here we report that Mex67 interacts directly with Nab2, an essential shuttling mRNA-binding protein required for export. We further show that Yra1 enhances the interaction between Nab2 and Mex67, and becomes dispensable in cells overexpressing Nab2 or Mex67. These observations appoint Nab2 as a potential adaptor for Mex67, and define Yra1/REF as a cofactor stabilizing the adaptor-receptor interaction. Importantly, Yra1 ubiquitination by the E3 ligase Tom1 promotes its dissociation from mRNP before export. Finally, loss of perinuclear Mlp proteins suppresses the growth defects of Tom1 and Yra1 ubiquitination mutants, suggesting that Tom1-mediated dissociation of Yra1 from Nab2-bound mRNAs is part of a surveillance mechanism at the pore, ensuring export of mature mRNPs only.


Assuntos
RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Regulação Fúngica da Expressão Gênica , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
15.
FEBS Lett ; 584(17): 3812-8, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20655916

RESUMO

Telomeres are heterochromatic structures at the ends of eukaryotic chromosomes. As other heterochromatin regions, telomeres are transcribed, from the subtelomeric region towards chromosome ends into the long non-coding RNA TERRA. Telomere transcription is a widespread phenomenon as it has been observed in species belonging to several kingdoms of the eukaryotic domain. TERRA is part of telomeric heterochromatin in addition to being present in the nucleoplasm. Here, we review the current knowledge of TERRA structure, biogenesis and turnover. In addition, we discuss presumed roles of this RNA during replication of telomeric DNA, heterochromatin formation and the regulation of telomerase.


Assuntos
RNA/genética , Telomerase/genética , Telômero/metabolismo , Animais , Cromatina/genética , Cromatina/metabolismo , Cromossomos/genética , Dano ao DNA , Replicação do DNA/genética , Heterocromatina/genética , Humanos , Cinética , Mamíferos , Neoplasias/genética , RNA/metabolismo , RNA não Traduzido/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Telomerase/metabolismo , Telômero/genética , Transcrição Gênica
16.
Mol Cell ; 35(2): 137-8, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19647509

RESUMO

In a recent issue of Molecular Cell, Bonetti et al. (2009) identify in the yeast Saccharomyces cerevisiae that the molecular activities that generate 3' overhangs at telomeric DNA ends are the same as those that resect DNA at double-strand breaks.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Telômero/genética , Reparo do DNA/fisiologia , DNA Fúngico/química , DNA Fúngico/genética , Modelos Genéticos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telômero/química
17.
Mol Cell ; 32(4): 465-77, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-19026778

RESUMO

Vertebrate telomeres are transcribed into telomeric repeat-containing RNA (TERRA) that associates with telomeres and may be important for telomere function. Here, we demonstrate that telomeres are also transcribed in Saccharomyces cerevisiae by RNA polymerase II (RNAPII). Yeast TERRA is polyadenylated and stabilized by Pap1p and regulated by the 5' to 3' exonuclease, Rat1p. rat1-1 mutant cells accumulate TERRA and harbor short telomeres because of defects in telomerase-mediated telomere elongation. Overexpression of RNaseH overcomes telomere elongation defects in rat1-1 cells, indicating that RNA/DNA hybrids inhibit telomerase function at chromosome ends in these mutants. Thus, telomeric transcription combined with Rat1p-dependent TERRA degradation is important for regulating telomerase in yeast. Telomere transcription is conserved in different kingdoms of the eukaryotic domain.


Assuntos
Exonucleases/metabolismo , Exorribonucleases/metabolismo , RNA/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Telômero/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Exonucleases/genética , Exorribonucleases/genética , Modelos Biológicos , RNA/metabolismo , RNA Fúngico/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteína 1 de Ligação a Repetições Teloméricas/genética
18.
FEBS Lett ; 582(14): 1987-96, 2008 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-18394429

RESUMO

The transcription of mRNA is tightly coupled to the concomitant recruitment of mRNA processing and export factors, resulting in the formation of mature and export competent mRNP complexes. This interconnection in gene expression implies extensive spatio-temporal control of mRNP dynamics to prevent mRNA export factors bound to pre-mRNA from functioning at the incorrect time and exporting nascent or incompletely processed pre-mRNAs. Recent discoveries provide molecular understanding of how a broad range of post-translational modifications together with RNA-dependent ATPases coordinate proteins acting at different steps and regulate mRNP assembly and export.


Assuntos
Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Ribonucleoproteínas/metabolismo , Transcrição Gênica , Transporte Ativo do Núcleo Celular , Humanos , Proteínas de Transporte Nucleocitoplasmático/metabolismo
19.
Cell ; 131(4): 706-17, 2007 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-18022365

RESUMO

Genome-wide studies in S. cerevisiae reveal that the transcriptome includes numerous antisense RNAs as well as intergenic transcripts regulated by the exosome component Rrp6. We observed that upon the loss of Rrp6 function, two PHO84 antisense transcripts are stabilized, and PHO84 gene transcription is repressed. Interestingly, the same phenotype is observed in wild-type cells during chronological aging. Epistasis and chromatin immunoprecipitation experiments indicate that the loss of Rrp6 function is paralleled by the recruitment of Hda1 histone deacetylase to PHO84 and neighboring genes. However, histone deacetylation is restricted to PHO84, suggesting that Hda1 activity depends on antisense RNA. Accordingly, the knockdown of antisense production prevents PHO84 gene repression, even in the absence of Rrp6. Together, our data indicate that the stabilization of antisense transcripts results in PHO84 gene repression via a mechanism distinct from transcription interference and that the modulation of Rrp6 function contributes to gene regulation by inducing RNA-dependent epigenetic modifications.


Assuntos
Regulação Fúngica da Expressão Gênica , Inativação Gênica , Histonas/metabolismo , Simportadores de Próton-Fosfato , RNA Antissenso , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transcrição Gênica , Senescência Celular , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Lisina/metabolismo , Regiões Promotoras Genéticas , Simportadores de Próton-Fosfato/genética , Simportadores de Próton-Fosfato/metabolismo , Estabilidade de RNA , RNA Antissenso/genética , RNA Antissenso/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Mol Biol Cell ; 18(7): 2561-8, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17475778

RESUMO

The ubiquitin-associated (UBA) domain of the mRNA nuclear export receptor Mex67 helps in coordinating transcription elongation and nuclear export by interacting both with ubiquitin conjugates and specific targets, such as Hpr1, a component of the THO complex. Here, we analyzed substrate specificity and ubiquitin selectivity of the Mex67 UBA domain. UBA-Mex67 is formed by three helices arranged in a classical UBA fold plus a fourth helix, H4. Deletion or mutation of helix H4 strengthens the interaction between UBA-Mex67 and ubiquitin, but it decreases its affinity for Hpr1. Interaction with Hpr1 is required for Mex67 UBA domain to bind polyubiquitin, possibly by inducing an H4-dependent conformational change. In vivo, deletion of helix H4 reduces cotranscriptional recruitment of Mex67 on activated genes, and it also shows an mRNA export defect. Based on these results, we propose that H4 functions as a molecular switch that coordinates the interaction of Mex67 with ubiquitin bound to specific substrates, defines the selectivity of the Mex67 UBA domain for polyubiquitin, and prevents its binding to nonspecific substrates.


Assuntos
Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Transporte de RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Cinética , Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência , Soluções , Ressonância de Plasmônio de Superfície , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...