Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 63(1): 75-88, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24009260

RESUMO

Insulin regulates heart metabolism through the regulation of insulin-stimulated glucose uptake. Studies have indicated that insulin can also regulate mitochondrial function. Relevant to this idea, mitochondrial function is impaired in diabetic individuals. Furthermore, the expression of Opa-1 and mitofusins, proteins of the mitochondrial fusion machinery, is dramatically altered in obese and insulin-resistant patients. Given the role of insulin in the control of cardiac energetics, the goal of this study was to investigate whether insulin affects mitochondrial dynamics in cardiomyocytes. Confocal microscopy and the mitochondrial dye MitoTracker Green were used to obtain three-dimensional images of the mitochondrial network in cardiomyocytes and L6 skeletal muscle cells in culture. Three hours of insulin treatment increased Opa-1 protein levels, promoted mitochondrial fusion, increased mitochondrial membrane potential, and elevated both intracellular ATP levels and oxygen consumption in cardiomyocytes in vitro and in vivo. Consequently, the silencing of Opa-1 or Mfn2 prevented all the metabolic effects triggered by insulin. We also provide evidence indicating that insulin increases mitochondrial function in cardiomyocytes through the Akt-mTOR-NFκB signaling pathway. These data demonstrate for the first time in our knowledge that insulin acutely regulates mitochondrial metabolism in cardiomyocytes through a mechanism that depends on increased mitochondrial fusion, Opa-1, and the Akt-mTOR-NFκB pathway.


Assuntos
Insulina/farmacologia , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Miócitos Cardíacos/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Células Cultivadas , GTP Fosfo-Hidrolases/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
2.
J Clin Invest ; 122(3): 1109-18, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22326951

RESUMO

The leading cause of death in diabetic patients is cardiovascular disease; diabetic cardiomyopathy is typified by alterations in cardiac morphology and function, independent of hypertension or coronary disease. However, the molecular mechanism that links diabetes to cardiomyopathy is incompletely understood. Insulin resistance is a hallmark feature of diabetes, and the FoxO family of transcription factors, which regulate cell size, viability, and metabolism, are established targets of insulin and growth factor signaling. Here, we set out to evaluate a possible role of FoxO proteins in diabetic cardiomyopathy. We found that FoxO proteins were persistently activated in cardiac tissue in mice with diabetes induced either genetically or by high-fat diet (HFD). FoxO activity was critically linked with development of cardiomyopathy: cardiomyocyte-specific deletion of FoxO1 rescued HFD-induced declines in cardiac function and preserved cardiomyocyte insulin responsiveness. FoxO1-depleted cells displayed a shift in their metabolic substrate usage, from free fatty acids to glucose, associated with decreased accumulation of lipids in the heart. Furthermore, we found that FoxO1-dependent downregulation of IRS1 resulted in blunted Akt signaling and insulin resistance. Together, these data suggest that activation of FoxO1 is an important mediator of diabetic cardiomyopathy and is a promising therapeutic target for the disease.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Animais , Peso Corporal , Tamanho Celular , Sobrevivência Celular , Cardiomiopatias Diabéticas/metabolismo , Ácidos Graxos/metabolismo , Proteína Forkhead Box O1 , Glucose/metabolismo , Insuficiência Cardíaca/metabolismo , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Somatomedinas/metabolismo , Frações Subcelulares
3.
J Cell Sci ; 124(Pt 13): 2143-52, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21628424

RESUMO

Increasing evidence indicates that endoplasmic reticulum (ER) stress activates the adaptive unfolded protein response (UPR), but that beyond a certain degree of ER damage, this response triggers apoptotic pathways. The general mechanisms of the UPR and its apoptotic pathways are well characterized. However, the metabolic events that occur during the adaptive phase of ER stress, before the cell death response, remain unknown. Here, we show that, during the onset of ER stress, the reticular and mitochondrial networks are redistributed towards the perinuclear area and their points of connection are increased in a microtubule-dependent fashion. A localized increase in mitochondrial transmembrane potential is observed only in redistributed mitochondria, whereas mitochondria that remain in other subcellular zones display no significant changes. Spatial re-organization of these organelles correlates with an increase in ATP levels, oxygen consumption, reductive power and increased mitochondrial Ca²âº uptake. Accordingly, uncoupling of the organelles or blocking Ca²âº transfer impaired the metabolic response, rendering cells more vulnerable to ER stress. Overall, these data indicate that ER stress induces an early increase in mitochondrial metabolism that depends crucially upon organelle coupling and Ca²âº transfer, which, by enhancing cellular bioenergetics, establishes the metabolic basis for the adaptation to this response.


Assuntos
Retículo Endoplasmático/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Estresse Fisiológico , Antibacterianos/farmacologia , Apoptose/fisiologia , Cálcio/metabolismo , Respiração Celular , Inibidores Enzimáticos/farmacologia , Células HeLa , Agonistas dos Receptores Histamínicos/farmacologia , Humanos , Potencial da Membrana Mitocondrial , Consumo de Oxigênio/efeitos dos fármacos , Fosfatos de Fosfatidilinositol/metabolismo , Transdução de Sinais/fisiologia
4.
J Bioenerg Biomembr ; 43(1): 47-51, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21258852

RESUMO

Mitochondria are highly dynamic organelles, capable of undergoing constant fission and fusion events, forming networks. These dynamic events allow the transmission of chemical and physical messengers and the exchange of metabolites within the cell. In this article we review the signaling mechanisms controlling mitochondrial fission and fusion, and its relationship with cell bioenergetics, especially in the heart. Furthermore we also discuss how defects in mitochondrial dynamics might be involved in the pathogenesis of metabolic cardiac diseases.


Assuntos
Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Transdução de Sinais/fisiologia , Humanos , Mitocôndrias/fisiologia , Modelos Biológicos
5.
Vasc Health Risk Manag ; 6: 723-34, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20859543

RESUMO

The urotensin II receptor, bound by the ligand urotensin II, generates second messengers, ie, inositol triphosphate and diacylglycerol, which stimulate the subsequent release of calcium (Ca(2+)) in vascular smooth muscle cells. Ca(2+) influx leads to the activation of Ca(2+)-dependent kinases (CaMK) via calmodulin binding, resulting in cellular proliferation. We hypothesize that urotensin II signaling in pulmonary arterial vascular smooth muscle cells (Pac1) and primary aortic vascular smooth muscle cells (PAVSMC) results in phosphorylation of Ca(2+)/calmodulin-dependent kinases leading to cellular proliferation. Exposure of Pac1 cultures to urotensin II increased intracellular Ca(2+), subsequently activating Ca(2+)/calmodulin-dependent kinase kinase (CaMKK), and Ca(2+)/calmodulin-dependent kinase Type I (CaMKI), extracellular signal-regulated kinase (ERK 1/2), and protein kinase D. Treatment of Pac1 and PAVSMC with urotensin II increased proliferation as measured by (3)H-thymidine uptake. The urotensin II-induced increase in (3)H-thymidine incorporation was inhibited by a CaMKK inhibitor. Taken together, our results demonstrate that urotensin II stimulation of smooth muscle cells leads to a Ca(2+)/calmodulin-dependent kinase-mediated increase in cellular proliferation.


Assuntos
Músculo Liso Vascular/crescimento & desenvolvimento , Transdução de Sinais/fisiologia , Urotensinas/fisiologia , Animais , Aorta/fisiologia , Western Blotting , Sinalização do Cálcio/fisiologia , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Expressão Gênica/fisiologia , Músculo Liso Vascular/fisiologia , Fosforilação , Proteína Quinase C/metabolismo , Artéria Pulmonar/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/fisiologia
6.
Curr Hypertens Rep ; 12(6): 418-25, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20865352

RESUMO

Sustained hypertension promotes structural, functional and metabolic remodeling of cardiomyocyte mitochondria. As long-lived, postmitotic cells, cardiomyocytes turn over mitochondria continuously to compensate for changes in energy demands and to remove damaged organelles. This process involves fusion and fission of existing mitochondria to generate new organelles and separate old ones for degradation via autophagy. Autophagy is a lysosome-dependent proteolytic pathway capable of processing cellular components, including organelles and protein aggregates. Autophagy can be either nonselective or selective and contributes to remodeling of the myocardium under stress. Fission of mitochondria, loss of membrane potential, and ubiquitination are emerging as critical steps that direct selective autophagic degradation of mitochondria. This review discusses the molecular mechanisms controlling mitochondrial dynamics, including fission, fusion, transport, and degradation. Furthermore, it examines recent studies revealing the importance of these processes in normal and diseased heart.


Assuntos
Autofagia/fisiologia , Mitocôndrias Cardíacas , Miócitos Cardíacos , Remodelação Ventricular/fisiologia , Animais , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Hipertensão/metabolismo , Hipertensão/patologia , Lisossomos/metabolismo , Camundongos , Mitocôndrias Cardíacas/fisiologia , Mitocôndrias Cardíacas/ultraestrutura , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Estresse Oxidativo/fisiologia , Ubiquitinação/fisiologia
7.
Neurosci Lett ; 404(1-2): 242-6, 2006 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-16808998

RESUMO

Oxidative stress contributes to changes in neurosensory processing, including pain, that occur during aging and neurodegeneration. The effects of neuronal oxidation on the opioid system are poorly understood. In this in vitro study, oxidative stress was induced by 3-nitroproprionic acid (3-NPA) in opioid-responsive differentiated SK-N-SH cells. Changes in the inhibitory effects of opioid receptor agonists on intracellular cAMP were used as a marker of the function of mu and delta opioid receptors (MOR and DOR, respectively). Cells were treated with morphine and selective MOR and DOR agonists and antagonists to characterize the function of each receptor subtype. Cyclic AMP (cAMP) was measured by enzyme immunoassay. Levels of reactive oxygen species (ROS) were assessed using the 2',7'-dichlorofluorescin diacetate assay. Exposure of cells to 3-NPA resulted in an increase in ROS. After 3-NPA exposure, there was a significant attenuation of the inhibitory effect of morphine and DAMGO but not of DPDPE on cAMP. In cells pretreated with CTOP, 3-NPA did not change the inhibitory effect on cAMP. These findings demonstrate for the first time that under conditions of mitochondrial damage, the function of MOR is significantly decreased, while the function of DOR does not change, suggesting that the effect of 3-NPA on opioid receptors is subtype-specific.


Assuntos
Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Neurônios/fisiologia , Receptores Opioides delta/fisiologia , Receptores Opioides mu/fisiologia , Linhagem Celular Tumoral , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , D-Penicilina (2,5)-Encefalina/farmacologia , Humanos , Neuroblastoma , Nitrocompostos/farmacologia , Propionatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptores Opioides delta/efeitos dos fármacos , Receptores Opioides mu/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...