Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 14: 1201104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483450

RESUMO

A product of the immediate early gene Arc (Activity-regulated cytoskeleton-associated protein or Arc protein) of retroviral ancestry resides in the genome of all tetrapods for millions of years and is expressed endogenously in neurons. It is a well-known protein, very important for synaptic plasticity and memory consolidation. Activity-dependent Arc expression concentrated in glutamatergic synapses affects the long-time synaptic strength of those excitatory synapses. Because it modulates excitatory-inhibitory balance in a neuronal network, the Arc gene itself was found to be related to the pathogenesis of epilepsy. General Arc knockout rodent models develop a susceptibility to epileptic seizures. Because of activity dependence, synaptic Arc protein synthesis also is affected by seizures. Interestingly, it was found that Arc protein in synapses of active neurons self-assemble in capsids of retrovirus-like particles, which can transfer genetic information between neurons, at least across neuronal synaptic boutons. Released Arc particles can be accumulated in astrocytes after seizures. It is still not known how capsid assembling and transmission timescale is affected by seizures. This scientific field is relatively novel and is experiencing swift transformation as it grapples with difficult concepts in light of evolving experimental findings. We summarize the emergent literature on the subject and also discuss the specific rodent models for studying Arc effects in epilepsy. We summarized both to clarify the possible role of Arc-related pseudo-viral particles in epileptic disorders, which may be helpful to researchers interested in this growing area of investigation.

2.
Biomedicines ; 11(1)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36672730

RESUMO

Investigation of the precise mechanisms of attention deficit and hyperactivity disorder (ADHD) and other dopamine-associated conditions is crucial for the development of new treatment approaches. In this study, we assessed the effects of repeated and acute administration of α2A-adrenoceptor agonist guanfacine on innate and learned forms of behavior of dopamine transporter knockout (DAT-KO) rats to evaluate the possible noradrenergic modulation of behavioral deficits. DAT-KO and wild type rats were trained in the Hebb-Williams maze to perform spatial working memory tasks. Innate behavior was evaluated via pre pulse inhibition (PPI). Brain activity of the prefrontal cortex and the striatum was assessed. Repeated administration of GF improved the spatial working memory task fulfillment and PPI in DAT-KO rats, and led to specific changes in the power spectra and coherence of brain activity. Our data indicate that both repeated and acute treatment with a non-stimulant noradrenergic drug lead to improvements in the behavior of DAT-KO rats. This study further supports the role of the intricate balance of norepinephrine and dopamine in the regulation of attention. The observed compensatory effect of guanfacine on the behavior of hyperdopaminergic rats may be used in the development of combined treatments to support the dopamine-norepinephrine balance.

3.
Front Psychiatry ; 13: 851296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401264

RESUMO

Attention deficit hyperactivity disorder (ADHD) is manifested by a specific set of behavioral deficits such as hyperactivity, impulsivity, and inattention. The dopamine neurotransmitter system is postulated to be involved in the pathogenesis of ADHD. Guanfacine, a selective α2A-adrenoceptor agonist, is prescribed for ADHD treatment. ADHD also is known to be associated with impairment of multiple aspects of cognition, including spatial memory, however, it remains unclear how modulation of the norepinephrine system can affect these deficits. Hyperdopaminergic dopamine transporter knockout (DAT-KO) rats are a valuable model for investigating ADHD. The DAT-KO rats are hyperactive and deficient in spatial working memory. This work aimed to evaluate the effects of noradrenergic drugs on the fulfillment of spatial cognitive tasks by DAT-KO rats. The rats were tested in the Hebb - Williams maze during training and following noradrenergic drugs administration. The efficiency of spatial orientation was assessed as to how fast the animal finds an optimal way to the goal box. Testing in a new maze configuration allowed us to evaluate the effects of drug administration after the acquisition of the task rules. The behavioral variables such as the distance traveled, the time to reach the goal box, and the time spent in the error zones were analyzed. It has been observed that α2A-adrenoceptor agonist Guanfacine (0.25 mg/kg) had only a minimal inhibitory effect on hyperactivity of DAT-KO rats in the maze but significantly ameliorated their perseverative pattern of activity and reduced the time spent in the error zones. In contrast, α2A-adrenoceptor antagonist Yohimbine, at the dose of 1 mg/kg, increased the distance traveled by DAT-KO rats and elevated the number of perseverative reactions and the time spent in the error zones. Guanfacine caused minimal effects in wild-type rats, while Yohimbine altered several parameters reflecting a detrimental effect on the performance in the maze. These data indicate that modulation of α2A-adrenoceptor activity potently affects both dopamine-dependent hyperactivity and cognitive dysfunctions. Similar mechanisms may be involved in the beneficial effects of Guanfacine on cognitive deficits in ADHD patients. This study further supports the translational potential of DAT-KO rats for testing new pharmacological drugs.

4.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054848

RESUMO

Gap junctions (GJs) are intercellular junctions that allow the direct transfer of ions and small molecules between neighboring cells, and GJs between astrocytes play an important role in the development of various pathologies of the brain, including regulation of the pathological neuronal synchronization underlying epileptic seizures. Recently, we found that a pathological change is observed in astrocytes during the ictal and interictal phases of 4-aminopyridin (4-AP)-elicited epileptic activity in vitro, which was correlated with neuronal synchronization and extracellular epileptic electrical activity. This finding raises the question: Does this signal depend on GJs between astrocytes? In this study we investigated the effect of the GJ blocker, carbenoxolone (CBX), on epileptic activity in vitro and in vivo. Based on the results obtained, we came to the conclusion that the astrocytic syncytium formed by GJ-associated astrocytes, which is responsible for the regulation of potassium, affects the formation of epileptic activity in astrocytes in vitro and epileptic seizure onset. This effect is probably an important, but not the only, mechanism by which CBX suppresses epileptic activity. It is likely that the mechanisms of selective inhibition of GJs between astrocytes will show important translational benefits in anti-epileptic therapies.


Assuntos
Anticonvulsivantes/uso terapêutico , Carbenoxolona/uso terapêutico , Epilepsia/tratamento farmacológico , 4-Aminopiridina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Anticonvulsivantes/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Eletrocorticografia , Epilepsia/patologia , Epilepsia/fisiopatologia , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Hipocampo/patologia , Humanos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Potássio/metabolismo
5.
Front Behav Neurosci ; 13: 194, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507389

RESUMO

Saccadic eye movements enable fast and precise scanning of the visual field, which is partially controlled by the posterior cerebellar vermis. Textbook saccades have a straight trajectory and a unimodal velocity profile, and hence have well-defined epochs of start and end. However, in practice only a fraction of saccades matches this description. One way in which a saccade can deviate from its trajectory is the presence of an overshoot or undershoot at the end of a saccadic eye movement just before fixation. This additional movement, known as a glissade, is regarded as a motor command error and was characterized decades ago but was almost never studied. Using rhesus macaques, we investigated the properties of glissades and changes to glissade kinematics following cerebellar lesions. Additionally, in monkeys with an intact cerebellum, we investigated whether the glissade amplitude can be modulated using multiple adaptation paradigms. Our results show that saccade kinematics are altered by the presence of a glissade, and that glissades do not appear to have any adaptive function as they do not bring the eye closer to the target. Quantification of these results establishes a detailed description of glissades. Further, we show that lesions to the posterior cerebellum have a deleterious effect on both saccade and glissade properties, which recovers over time. Finally, the saccadic adaptation experiments reveal that glissades cannot be modulated by this training paradigm. Together our work offers a functional study of glissades and provides new insight into the cerebellar involvement in this type of motor error.

6.
Curr Biol ; 25(16): 2065-74, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26190072

RESUMO

Neuronal response gain enhancement is a classic signature of the allocation of covert visual attention without eye movements. However, microsaccades continuously occur during gaze fixation. Because these tiny eye movements are preceded by motor preparatory signals well before they are triggered, it may be the case that a corollary of such signals may cause enhancement, even without attentional cueing. In six different macaque monkeys and two different brain areas previously implicated in covert visual attention (superior colliculus and frontal eye fields), we show neuronal response gain enhancement for peripheral stimuli appearing immediately before microsaccades. This enhancement occurs both during simple fixation with behaviorally irrelevant peripheral stimuli and when the stimuli are relevant for the subsequent allocation of covert visual attention. Moreover, this enhancement occurs in both purely visual neurons and visual-motor neurons, and it is replaced by suppression for stimuli appearing immediately after microsaccades. Our results suggest that there may be an obligatory link between microsaccade occurrence and peripheral selective processing, even though microsaccades can be orders of magnitude smaller than the eccentricities of peripheral stimuli. Because microsaccades occur in a repetitive manner during fixation, and because these eye movements reset neurophysiological rhythms every time they occur, our results highlight a possible mechanism through which oculomotor events may aid periodic sampling of the visual environment for the benefit of perception, even when gaze is prevented from overtly shifting. One functional consequence of such periodic sampling could be the magnification of rhythmic fluctuations of peripheral covert visual attention.


Assuntos
Movimentos Oculares , Lobo Frontal/fisiologia , Macaca mulatta/fisiologia , Movimentos Sacádicos , Colículos Superiores/fisiologia , Percepção Visual , Animais , Feminino , Fixação Ocular , Masculino
7.
Front Cell Neurosci ; 9: 122, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25918500

RESUMO

Climbing fiber (CF) triggered complex spikes (CS) are massive depolarization bursts in the cerebellar Purkinje cell (PC), showing several high frequency spikelet components (±600 Hz). Since its early observations, the CS is known to vary in shape. In this study we describe CS waveforms, extracellularly recorded in awake primates (Macaca mulatta) performing saccades. Every PC analyzed showed a range of CS shapes with profoundly different duration and number of spikelets. The initial part of the CS was rather constant but the later part differed greatly, with a pronounced jitter of the last spikelets causing a large variation in total CS duration. Waveforms did not effect the following pause duration in the simple spike (SS) train, nor were SS firing rates predictive of the waveform shapes or vice versa. The waveforms did not differ between experimental conditions nor was there a preferred sequential order of CS shapes throughout the recordings. Instead, part of their variability, the timing jitter of the CS's last spikelets, strongly correlated with interval length to the preceding CS: shorter CS intervals resulted in later appearance of the last spikelets in the CS burst, and vice versa. A similar phenomenon was observed in rat PCs recorded in vitro upon repeated extracellular stimulation of CFs at different frequencies in slice experiments. All together these results strongly suggest that the variability in the timing of the last spikelet is due to CS frequency dependent changes in PC excitability.

8.
J Neurosci ; 33(41): 16220-35, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24107954

RESUMO

Microsaccades during fixation exhibit distinct time courses of frequency and direction modulations after stimulus onsets, but the mechanisms for these modulations are unresolved. On the one hand, microsaccade rate drops within <100 ms after stimulus onset, a phenomenon described as microsaccadic inhibition. On the other, the directions of the rare microsaccades that do occur during inhibition are, surprisingly, the most highly correlated with stimulus location. Here we show, using a combined computational and experimental approach, that these apparently dichotomous observations can simply result from a single mechanism: the phase resetting by stimulus onsets of ongoing microsaccadic oscillatory rhythms during fixation. Using experiments on monkeys and model simulations, we show that stimulus onsets act as countermanding stimuli, such as those in large saccadic countermanding tasks: they cancel an upcoming movement program and start a competing one, thus implementing phase resetting. We also show that the rare microsaccades occurring during microsaccadic inhibition are simply noncanceled movements in the countermanding framework and that they reflect the instantaneous state of visual representations expected in spatial maps representing stimuli. Remarkably, a dynamic interaction between the efficacy of the countermanding process and the metrics of the microsaccade being countermanded not only explains microsaccade rate changes, but it also predicts the time course patterns of microsaccade directions and amplitudes. Our parsimonious framework for understanding microsaccadic modulations around stimulus onsets allows analyzing microsaccades (and larger saccades) using the extensive toolkit of oscillatory dynamical systems often used for modeling spiking neurons, and it constrains neural models of microsaccade triggering.


Assuntos
Sinais (Psicologia) , Modelos Neurológicos , Movimentos Sacádicos/fisiologia , Animais , Fixação Ocular , Macaca mulatta , Masculino , Neurônios/fisiologia , Percepção Visual/fisiologia
9.
Vision Res ; 44(13): 1589-600, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15126067

RESUMO

This study investigated the influence of spatial cueing (valid/invalid/no cue) on visual discrimination in human and non-human primates. We employed a spatial resolution task which required the accurate discrimination of the orientation of a Landolt "C" ring. The C appeared as single target in specific retinal locations while subjects maintained fixation of a central fixation point. The minimal discernable size of the "C" (=acuity threshold) was determined as a function of cue condition, retinal eccentricity (3 degrees -15 degrees ), and stimulus onset asynchrony (SOA) (200-1100 ms). For both species, we found consistent benefits from spatial cueing with differences in absolute thresholds ranging from 6% to 25%. These differences increased with retinal eccentricity and decreased with longer SOAs. Further experiments performed with humans only, showed that the effect of spatial cueing on visual discrimination is independent of spatial uncertainty, i.e. the number of possible target locations (2 versus 4), but fades with longer target presentation times. From our results we draw the following conclusions. (i) Since sensory noise and spatial uncertainty was small in our tasks, spatial shifts of attention involve signal enhancement in both, human and non-human primates. (ii) The similarity of the results obtained for humans and macaque monkeys indicates that the latter may serve as a suitable model system in studies trying to tackle the neural underpinnings of attentional control. (iii) In order to elicit robust effects on visual discrimination by spatial shifts of attention, a paradigm comprising short SOAs (approximately 200 ms) and target presentation times (approximately 150 ms), and retinal eccentricities larger than approximately 9 degrees seems most promising.


Assuntos
Sinais (Psicologia) , Macaca mulatta/fisiologia , Acuidade Visual/fisiologia , Adulto , Animais , Feminino , Humanos , Masculino , Psicofísica
10.
Nat Neurosci ; 7(1): 56-64, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14699418

RESUMO

The analysis of a peripheral visual location can be improved in two ways: either by orienting one's gaze (usually by making a foveating saccade) or by 'covertly' shifting one's attention to the peripheral location without making an eye movement. The premotor theory of attention holds that saccades and spatial shifts of attention share a common functional module with a distinct neuronal basis. Using single-unit recording from the brains of trained rhesus monkeys, we investigated whether the superior colliculus, the major subcortical center for the control of saccades, is part of this shared network for attention and saccades. Here we show that a distinct type of neuron in the intermediate layer of the superior colliculus, the visuomotor neuron, which is known to be centrally involved in the preparation of saccades, is also active during covert shifts of attention.


Assuntos
Atenção/fisiologia , Neurônios/fisiologia , Tempo de Reação/fisiologia , Movimentos Sacádicos/fisiologia , Colículos Superiores/fisiologia , Animais , Macaca mulatta , Estimulação Luminosa/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...