Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(10): 4344-4350, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37167540

RESUMO

One of the challenges of nanoelectromechanical systems (NEMS) is the effective transduction of the tiny resonators. Vertical structures, such as nanomechanical pillar resonators, which are exploited in optomechanics, acoustic metamaterials, and nanomechanical sensing, are particularly challenging to transduce. Existing electromechanical transduction methods are ill-suited as they put constraints on the pillars' material and do not enable a transduction of freestanding pillars. Here, we present an electromechanical transduction method for single nanomechanical pillar resonators based on surface acoustic waves (SAWs). We demonstrate the transduction of freestanding nanomechanical platinum-carbon pillars in the first-order bending and compression mode. Since the principle of the transduction method is based on resonant scattering of a SAW by a nanomechanical resonator, our transduction method is independent of the pillar's material and not limited to pillar-shaped geometries. It represents a general method to transduce vertical mechanical resonators with nanoscale lateral dimensions.

2.
Beilstein J Nanotechnol ; 14: 123-132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36743298

RESUMO

Atomic force microscopy (AFM) is highly regarded as a lens peering into the next discoveries of nanotechnology. Fundamental research in atomic interactions, molecular reactions, and biological cell behaviour are key focal points, demanding a continuous increase in resolution and sensitivity. While renowned fields such as optomechanics have marched towards outstanding signal-to-noise ratios, these improvements have yet to find a practical way to AFM. As a solution, we investigate here a mechanism in which individual mechanical eigenmodes of a microcantilever couple to one another, mimicking optomechanical techniques to reduce thermal noise. We have a look at the most commonly used modes in AFM, starting with the first two flexural modes of cantilevers and asses the impact of an amplified coupling between them. In the following, we expand our investigation to the sea of eigenmodes available in the same structure and find a maximum coupling of 9.38 × 103 Hz/nm between two torsional modes. Through such findings we aim to expand the field of multifrequency AFM with innumerable possibilities leading to improved signal-to-noise ratios, all accessible with no additional hardware.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...