Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2957, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580646

RESUMO

Nonsense mutations - the underlying cause of approximately 11% of all genetic diseases - prematurely terminate protein synthesis by mutating a sense codon to a premature stop or termination codon (PTC). An emerging therapeutic strategy to suppress nonsense defects is to engineer sense-codon decoding tRNAs to readthrough and restore translation at PTCs. However, the readthrough efficiency of the engineered suppressor tRNAs (sup-tRNAs) largely varies in a tissue- and sequence context-dependent manner and has not yet yielded optimal clinical efficacy for many nonsense mutations. Here, we systematically analyze the suppression efficacy at various pathogenic nonsense mutations. We discover that the translation velocity of the sequence upstream of PTCs modulates the sup-tRNA readthrough efficacy. The PTCs most refractory to suppression are embedded in a sequence context translated with an abrupt reversal of the translation speed leading to ribosomal collisions. Moreover, modeling translation velocity using Ribo-seq data can accurately predict the suppression efficacy at PTCs. These results reveal previously unknown molecular signatures contributing to genotype-phenotype relationships and treatment-response heterogeneity, and provide the framework for the development of personalized tRNA-based gene therapies.


Assuntos
Códon sem Sentido , RNA de Transferência , Códon sem Sentido/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Códon/genética , Ribossomos/metabolismo , Terapia Genética , Biossíntese de Proteínas/genética , Códon de Terminação
2.
Proc Natl Acad Sci U S A ; 121(11): e2312874121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38451943

RESUMO

The success of bacterial pathogens depends on the coordinated expression of virulence determinants. Regulatory circuits that drive pathogenesis are complex, multilayered, and incompletely understood. Here, we reveal that alterations in tRNA modifications define pathogenic phenotypes in the opportunistic pathogen Pseudomonas aeruginosa. We demonstrate that the enzymatic activity of GidA leads to the introduction of a carboxymethylaminomethyl modification in selected tRNAs. Modifications at the wobble uridine base (cmnm5U34) of the anticodon drives translation of transcripts containing rare codons. Specifically, in P. aeruginosa the presence of GidA-dependent tRNA modifications modulates expression of genes encoding virulence regulators, leading to a cellular proteomic shift toward pathogenic and well-adapted physiological states. Our approach of profiling the consequences of chemical tRNA modifications is general in concept. It provides a paradigm of how environmentally driven tRNA modifications govern gene expression programs and regulate phenotypic outcomes responsible for bacterial adaption to challenging habitats prevailing in the host niche.


Assuntos
Proteômica , Pseudomonas aeruginosa , Virulência/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Anticódon , Bactérias/metabolismo
3.
Mol Cell ; 84(3): 584-595.e6, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244546

RESUMO

The most abundant N6-methyladenosine (m6A) modification on mRNAs is installed non-stoichiometrically across transcripts, with 5' untranslated regions (5' UTRs) being the least conductive. 5' UTRs are essential for translation initiation, yet the molecular mechanisms orchestrated by m6A remain poorly understood. Here, we combined structural, biochemical, and single-molecule approaches and show that at the most common position, a single m6A does not affect translation yields, the kinetics of translation initiation complex assembly, or start codon recognition both under permissive growth and following exposure to oxidative stress. Cryoelectron microscopy (cryo-EM) structures of the late preinitiation complex reveal that m6A purine ring established stacking interactions with an arginine side chain of the initiation factor eIF2α, although with only a marginal energy contribution, as estimated computationally. These findings provide molecular insights into m6A interactions with the initiation complex and suggest that the subtle stabilization is unlikely to affect the translation dynamics under homeostatic conditions or stress.


Assuntos
Adenosina/análogos & derivados , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , Regiões 5' não Traduzidas , Microscopia Crioeletrônica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Códon de Iniciação/genética
4.
Nat Rev Drug Discov ; 23(2): 108-125, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38049504

RESUMO

Transfer RNAs (tRNAs) have a crucial role in protein synthesis, and in recent years, their therapeutic potential for the treatment of genetic diseases - primarily those associated with a mutation altering mRNA translation - has gained significant attention. Engineering tRNAs to readthrough nonsense mutation-associated premature termination of mRNA translation can restore protein synthesis and function. In addition, supplementation of natural tRNAs can counteract effects of missense mutations in proteins crucial for tRNA biogenesis and function in translation. This Review will present advances in the development of tRNA therapeutics with high activity and safety in vivo and discuss different formulation approaches for single or chronic treatment modalities. The field of tRNA therapeutics is still in its early stages, and a series of challenges related to tRNA efficacy and stability in vivo, delivery systems with tissue-specific tropism, and safe and efficient manufacturing need to be addressed.


Assuntos
Códon sem Sentido , RNA de Transferência , Humanos , Mutação , RNA de Transferência/genética , RNA de Transferência/metabolismo , Biossíntese de Proteínas
5.
ACS Synth Biol ; 12(9): 2524-2535, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595156

RESUMO

Predictable and controllable tuning of genetic circuits to regulate gene expression, including modulation of existing circuits or constructs without the need for redesign or rebuilding, is a persistent challenge in synthetic biology. Here, we propose rationally designed new small RNAs (sRNAs) that dynamically modulate gene expression of genetic circuits with a broad range (high, medium, and low) of repression. We designed multiple multilayer genetic circuits in which the variable effector element is a transcription factor (TF) controlling downstream the production of a reporter protein. The sRNAs target TFs instead of a reporter gene, and harnessing the intrinsic RNA-interference pathway in E. coli allowed for a wide range of expression modulation of the reporter protein, including the most difficult to achieve dynamic switch to an OFF state. The synthetic sRNAs are expressed independently of the circuit(s), thus allowing for repression without modifying the circuit itself. Our work provides a frame for achieving independent modulation of gene expression and dynamic and modular control of the multilayer genetic circuits by only including an independent control circuit expressing synthetic sRNAs, without altering the structure of existing genetic circuits.


Assuntos
Escherichia coli , Redes Reguladoras de Genes , Escherichia coli/genética , Redes Reguladoras de Genes/genética , Genes Reporter , RNA , Biologia Sintética
6.
J Biol Chem ; 299(9): 105089, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495112

RESUMO

Recent discoveries establish tRNAs as central regulators of mRNA translation dynamics, and therefore cotranslational folding and function of the encoded protein. The tRNA pool, whose composition and abundance change in a cell- and tissue-dependent manner, is the main factor which determines mRNA translation velocity. In this review, we discuss a group of pathogenic mutations, in the coding sequences of either protein-coding genes or in tRNA genes, that alter mRNA translation dynamics. We also summarize advances in tRNA biology that have uncovered how variations in tRNA levels on account of genetic mutations affect protein folding and function, and thereby contribute to phenotypic diversity in clinical manifestations.


Assuntos
Mutação , Biossíntese de Proteínas , RNA Mensageiro , RNA de Transferência , Humanos , Códon/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Polimorfismo de Nucleotídeo Único , Fatores de Tempo
7.
Nature ; 618(7966): 842-848, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258671

RESUMO

Nonsense mutations are the underlying cause of approximately 11% of all inherited genetic diseases1. Nonsense mutations convert a sense codon that is decoded by tRNA into a premature termination codon (PTC), resulting in an abrupt termination of translation. One strategy to suppress nonsense mutations is to use natural tRNAs with altered anticodons to base-pair to the newly emerged PTC and promote translation2-7. However, tRNA-based gene therapy has not yielded an optimal combination of clinical efficacy and safety and there is presently no treatment for individuals with nonsense mutations. Here we introduce a strategy based on altering native tRNAs into  efficient suppressor tRNAs (sup-tRNAs) by individually fine-tuning their sequence to the physico-chemical properties of the amino acid that they carry. Intravenous and intratracheal lipid nanoparticle (LNP) administration of sup-tRNA in mice restored the production of functional proteins with nonsense mutations. LNP-sup-tRNA formulations caused no discernible readthrough at endogenous native stop codons, as determined by ribosome profiling. At clinically important PTCs in the cystic fibrosis transmembrane conductance regulator gene (CFTR), the sup-tRNAs re-established expression and function in cell systems and patient-derived nasal epithelia and restored airway volume homeostasis. These results provide a framework for the development of tRNA-based therapies with a high molecular safety profile and high efficacy in targeted PTC suppression.


Assuntos
Códon sem Sentido , Regulador de Condutância Transmembrana em Fibrose Cística , RNA de Transferência , Animais , Camundongos , Aminoácidos/genética , Códon sem Sentido/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , RNA de Transferência/administração & dosagem , RNA de Transferência/genética , RNA de Transferência/uso terapêutico , Pareamento de Bases , Anticódon/genética , Biossíntese de Proteínas , Mucosa Nasal/metabolismo , Perfil de Ribossomos
8.
Genome Biol ; 24(1): 30, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803582

RESUMO

BACKGROUND: The Ccr4-Not complex is mostly known as the major eukaryotic deadenylase. However, several studies have uncovered roles of the complex, in particular of the Not subunits, unrelated to deadenylation and relevant for translation. In particular, the existence of Not condensates that regulate translation elongation dynamics has been reported. Typical studies that evaluate translation efficiency rely on soluble extracts obtained after the disruption of cells and ribosome profiling. Yet cellular mRNAs in condensates can be actively translated and may not be present in such extracts. RESULTS: In this work, by analyzing soluble and insoluble mRNA decay intermediates in yeast, we determine that insoluble mRNAs are enriched for ribosomes dwelling at non-optimal codons compared to soluble mRNAs. mRNA decay is higher for soluble RNAs, but the proportion of co-translational degradation relative to the overall mRNA decay is higher for insoluble mRNAs. We show that depletion of Not1 and Not4 inversely impacts mRNA solubilities and, for soluble mRNAs, ribosome dwelling according to codon optimality. Depletion of Not4 solubilizes mRNAs with lower non-optimal codon content and higher expression that are rendered insoluble by Not1 depletion. By contrast, depletion of Not1 solubilizes mitochondrial mRNAs, which are rendered insoluble upon Not4 depletion. CONCLUSIONS: Our results reveal that mRNA solubility defines the dynamics of co-translation events and is oppositely regulated by Not1 and Not4, a mechanism that we additionally determine may already be set by Not1 promoter association in the nucleus.


Assuntos
Ribossomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Códon/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Solubilidade , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Nucleic Acids Res ; 50(21): 12515-12526, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36370110

RESUMO

In Escherichia coli, the heat shock protein 15 (Hsp15) is part of the cellular response to elevated temperature. Hsp15 interacts with peptidyl-tRNA-50S complexes that arise upon dissociation of translating 70S ribosomes, and is proposed to facilitate their rescue and recycling. A previous structure of E. coli Hsp15 in complex with peptidyl-tRNA-50S complex reported a binding site located at the central protuberance of the 50S subunit. By contrast, recent structures of RqcP, the Hsp15 homolog in Bacillus subtilis, in complex with peptidyl-tRNA-50S complexes have revealed a distinct site positioned between the anticodon-stem-loop (ASL) of the P-site tRNA and H69 of the 23S rRNA. Here we demonstrate that exposure of E. coli cells to heat shock leads to a decrease in 70S ribosomes and accumulation of 50S subunits, thus identifying a natural substrate for Hsp15 binding. Additionally, we have determined a cryo-EM reconstruction of the Hsp15-50S-peptidyl-tRNA complex isolated from heat shocked E. coli cells, revealing that Hsp15 binds to the 50S-peptidyl-tRNA complex analogously to its B. subtilis homolog RqcP. Collectively, our findings support a model where Hsp15 stabilizes the peptidyl-tRNA in the P-site and thereby promotes access to the A-site for putative rescue factors to release the aberrant nascent polypeptide chain.


Assuntos
Escherichia coli , Proteínas de Choque Térmico , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Ribossomos/metabolismo , RNA Ribossômico 23S/metabolismo , RNA de Transferência/genética , RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo
10.
RNA Biol ; 19(1): 877-884, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35796440

RESUMO

Stress granules (SGs) are membrane-less condensates composed of RNA and protein that assemble in response to stress stimuli and disassemble when stress is lifted. Both assembly and disassembly are tightly controlled processes, yet, it remains elusive whether mRNAs in SGs completely recover for translation following stress relief. Using RNA-seq of translating fractions in human cell line, we found that higher fraction of the m6A-modified mRNAs recovered for translation compared to unmodified mRNAs, i.e. 95% vs 84%, respectively. Considering structural mRNA analysis, we found that the m6A modification enhances structuring at nucleotides in its close vicinity. Our results suggest that SG-sequestered mRNAs disassemble nearly completely from SGs and the m6A modification may display some advantage to the mRNAs in their recovery for translation likely by m6A-driven structural stabilization.


Assuntos
Grânulos Citoplasmáticos , Grânulos de Estresse , Linhagem Celular , Grânulos Citoplasmáticos/metabolismo , Humanos , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Cancer Invest ; 40(7): 621-628, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35435097

RESUMO

We investigated the survival effect of lymphadenectomy in ovarian cancer. The five-year progression-free and overall survival in early-stage ovarian cancer were not affected. Preliminary, unadjusted analysis in advanced ovarian cancer suggested an improvement in survival. However, after adjusting for other factors, e.g. ECOG performance status and patients' age, this survival advantage vanished. Our analysis suggests that systemic pelvic and para-aortic lymphadenectomy was not associated with an improvement of the progression-free and overall survival of patients with optimally debulked ovarian cancer.


Assuntos
Excisão de Linfonodo , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário/cirurgia , Feminino , Humanos , Estadiamento de Neoplasias , Neoplasias Ovarianas/patologia , Pelve/patologia , Estudos Retrospectivos
12.
Bio Protoc ; 12(4): e4335, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35340290

RESUMO

Transfer RNAs (tRNAs) are highly abundant species and, along their biosynthetic and functional path, they establish interactions with a plethora of proteins. The high number of nucleobase modifications in tRNAs renders conventional RNA quantification approaches unsuitable to study protein-tRNA interactions and their associated functional roles in the cell. We present an immunoprecipitation-based approach to quantify tRNA bound to its interacting protein partner(s). The tRNA-protein complexes are immunoprecipitated from cells or tissues and tRNAs are identified by northern blot and quantified by tRNA-specific fluorescent labeling. The tRNA interacting protein is quantified by an automated western blot and the tRNA amount is presented per unit of the interacting protein. We tested the approach to quantify tRNAGly associated with mutant glycyl-tRNA-synthetase implicated in Charcot-Marie-Tooth disease. This simple and versatile protocol can be easily adapted to any other tRNA binding proteins. Graphic abstract: Figure 1.Schematic of the tRNA-Immunoprecipitation approach.

13.
ACS Synth Biol ; 11(3): 1049-1059, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35174698

RESUMO

The use of short peptide tags in synthetic genetic circuits allows for the tuning of gene expression dynamics and release of amino acid resources through targeted protein degradation. Here, we use elements of the Escherichia coli and Mesoplasma florum transfer-mRNA (tmRNA) ribosome rescue systems to compare endogenous and foreign proteolysis systems in E. coli. We characterize the performance and burden of each and show that, while both greatly shorten the half-life of a tagged protein, the endogenous system is approximately 10 times more efficient. On the basis of these results we then demonstrate using mathematical modeling and experiments how proteolysis can improve cellular robustness through targeted degradation of a reporter protein in auxotrophic strains, providing a limited secondary source of essential amino acids that help partially restore growth when nutrients become scarce. These findings provide avenues for controlling the functional lifetime of engineered cells once deployed and increasing their tolerance to fluctuations in nutrient availability.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Nutrientes , Biossíntese de Proteínas , Proteólise , RNA Bacteriano/genética
14.
Nucleic Acids Res ; 49(20): 11823-11833, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34669948

RESUMO

In translation, G•U mismatch in codon-anticodon decoding is an error hotspot likely due to transition of G•U from wobble (wb) to Watson-Crick (WC) geometry, which is governed by keto/enol tautomerization (wb-WC reaction). Yet, effects of the ribosome on the wb-WC reaction and its implications for decoding mechanism remain unclear. Employing quantum-mechanical/molecular-mechanical umbrella sampling simulations using models of the ribosomal decoding site (A site) we determined that the wb-WC reaction is endoergic in the open, but weakly exoergic in the closed A-site state. We extended the classical 'induced-fit' model of initial selection by incorporating wb-WC reaction parameters in open and closed states. For predicted parameters, the non-equilibrium exoergic wb-WC reaction is kinetically limited by the decoding rates. The model explains early observations of the WC geometry of G•U from equilibrium structural studies and reveals discrimination capacity for the working ribosome operating at non-equilibrium conditions. The equilibration of the exoergic wb-WC reaction counteracts the equilibration of the open-closed transition of the A site, constraining the decoding accuracy and potentially explaining the persistence of the G•U as an error hotspot. Our results unify structural and mechanistic views of codon-anticodon decoding and generalize the 'induced-fit' model for flexible substrates.


Assuntos
Pareamento Incorreto de Bases , Pareamento de Bases , Simulação de Dinâmica Molecular , DNA/química , DNA/genética , Guanina/química , Biossíntese de Proteínas , RNA Mensageiro/química , RNA Mensageiro/genética , Uridina/química
15.
Science ; 373(6559): 1161-1166, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516840

RESUMO

Heterozygous mutations in six transfer RNA (tRNA) synthetase genes cause Charcot-Marie-Tooth (CMT) peripheral neuropathy. CMT mutant tRNA synthetases inhibit protein synthesis by an unknown mechanism. We found that CMT mutant glycyl-tRNA synthetases bound tRNAGly but failed to release it, resulting in tRNAGly sequestration. This sequestration potentially depleted the cellular tRNAGly pool, leading to insufficient glycyl-tRNAGly supply to the ribosome. Accordingly, we found ribosome stalling at glycine codons and activation of the integrated stress response (ISR) in affected motor neurons. Moreover, transgenic overexpression of tRNAGly rescued protein synthesis, peripheral neuropathy, and ISR activation in Drosophila and mouse CMT disease type 2D (CMT2D) models. Conversely, inactivation of the ribosome rescue factor GTPBP2 exacerbated peripheral neuropathy. Our findings suggest a molecular mechanism for CMT2D, and elevating tRNAGly levels may thus have therapeutic potential.


Assuntos
Doença de Charcot-Marie-Tooth/metabolismo , Glicina-tRNA Ligase/metabolismo , RNA de Transferência de Glicina/metabolismo , Animais , Doença de Charcot-Marie-Tooth/genética , Modelos Animais de Doenças , Drosophila melanogaster , Feminino , Glicina-tRNA Ligase/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/fisiologia , RNA de Transferência de Glicina/genética
16.
Cell Rep ; 36(9): 109633, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34469733

RESUMO

In this work, we show that Not4 and Not5 from the Ccr4-Not complex modulate translation elongation dynamics and change ribosome A-site dwelling occupancy in a codon-dependent fashion. These codon-specific changes in not5Δ cells are very robust and independent of codon position within the mRNA, the overall mRNA codon composition, or changes of mRNA expression levels. They inversely correlate with codon-specific changes in cells depleted for eIF5A and positively correlate with those in cells depleted for ribosome-recycling factor Rli1. Not5 resides in punctate loci, co-purifies with ribosomes and Rli1, but not with eIF5A, and limits mRNA solubility. Overexpression of wild-type or non-complementing Rli1 and loss of Rps7A ubiquitination enable Not4 E3 ligase-dependent translation of polyarginine stretches. We propose that Not4 and Not5 modulate translation elongation dynamics to produce a soluble proteome by Rps7A ubiquitination, dynamic condensates that limit mRNA solubility and exclude eIF5A, and a moonlighting function of Rli1.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Fator de Iniciação 5 em Eucariotos/metabolismo , Elongação Traducional da Cadeia Peptídica , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Subunidades Ribossômicas Menores/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Fator de Iniciação 5 em Eucariotos/genética , Regulação Fúngica da Expressão Gênica , Fatores de Iniciação de Peptídeos/genética , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Subunidades Ribossômicas Menores/genética , Ribossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Fator de Iniciação de Tradução Eucariótico 5A
17.
Nucleic Acids Res ; 49(14): 8355-8369, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34255840

RESUMO

In the cell, stalled ribosomes are rescued through ribosome-associated protein quality-control (RQC) pathways. After splitting of the stalled ribosome, a C-terminal polyalanine 'tail' is added to the unfinished polypeptide attached to the tRNA on the 50S ribosomal subunit. In Bacillus subtilis, polyalanine tailing is catalyzed by the NEMF family protein RqcH, in cooperation with RqcP. However, the mechanistic details of this process remain unclear. Here we demonstrate that RqcH is responsible for tRNAAla selection during RQC elongation, whereas RqcP lacks any tRNA specificity. The ribosomal protein uL11 is crucial for RqcH, but not RqcP, recruitment to the 50S subunit, and B. subtilis lacking uL11 are RQC-deficient. Through mutational mapping, we identify critical residues within RqcH and RqcP that are important for interaction with the P-site tRNA and/or the 50S subunit. Additionally, we have reconstituted polyalanine-tailing in vitro and can demonstrate that RqcH and RqcP are necessary and sufficient for processivity in a minimal system. Moreover, the in vitro reconstituted system recapitulates our in vivo findings by reproducing the importance of conserved residues of RqcH and RqcP for functionality. Collectively, our findings provide mechanistic insight into the role of RqcH and RqcP in the bacterial RQC pathway.


Assuntos
Bacillus subtilis/genética , DNA Helicases/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Peptídeos/genética , Peptídeos/metabolismo , RNA de Transferência , Subunidades Ribossômicas Maiores de Bactérias/genética
18.
Nat Commun ; 12(1): 3850, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158503

RESUMO

Three stop codons (UAA, UAG and UGA) terminate protein synthesis and are almost exclusively recognized by release factors. Here, we design de novo transfer RNAs (tRNAs) that efficiently decode UGA stop codons in Escherichia coli. The tRNA designs harness various functionally conserved aspects of sense-codon decoding tRNAs. Optimization within the TΨC-stem to stabilize binding to the elongation factor, displays the most potent effect in enhancing suppression activity. We determine the structure of the ribosome in a complex with the designed tRNA bound to a UGA stop codon in the A site at 2.9 Å resolution. In the context of the suppressor tRNA, the conformation of the UGA codon resembles that of a sense-codon rather than when canonical translation termination release factors are bound, suggesting conformational flexibility of the stop codons dependent on the nature of the A-site ligand. The systematic analysis, combined with structural insights, provides a rationale for targeted repurposing of tRNAs to correct devastating nonsense mutations that introduce a premature stop codon.


Assuntos
Códon sem Sentido/genética , Códon de Terminação/genética , Escherichia coli/genética , Biossíntese de Proteínas/genética , RNA de Transferência/genética , Ribossomos/genética , Sequência de Bases , Sítios de Ligação/genética , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Supressão Genética
19.
PLoS Genet ; 17(6): e1009585, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34061833

RESUMO

Small proteins play essential roles in bacterial physiology and virulence, however, automated algorithms for genome annotation are often not yet able to accurately predict the corresponding genes. The accuracy and reliability of genome annotations, particularly for small open reading frames (sORFs), can be significantly improved by integrating protein evidence from experimental approaches. Here we present a highly optimized and flexible bioinformatics workflow for bacterial proteogenomics covering all steps from (i) generation of protein databases, (ii) database searches and (iii) peptide-to-genome mapping to (iv) visualization of results. We used the workflow to identify high quality peptide spectrum matches (PSMs) for small proteins (≤ 100 aa, SP100) in Staphylococcus aureus Newman. Protein extracts from S. aureus were subjected to different experimental workflows for protein digestion and prefractionation and measured with highly sensitive mass spectrometers. In total, 175 proteins with up to 100 aa (SP100) were identified. Out of these 24 (ranging from 9 to 99 aa) were novel and not contained in the used genome annotation.144 SP100 are highly conserved and were found in at least 50% of the publicly available S. aureus genomes, while 127 are additionally conserved in other staphylococci. Almost half of the identified SP100 were basic, suggesting a role in binding to more acidic molecules such as nucleic acids or phospholipids.


Assuntos
Proteínas de Bactérias/metabolismo , Proteogenômica/métodos , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Simulação por Computador , Bases de Dados de Proteínas , Espectrometria de Massas/métodos , Anotação de Sequência Molecular , Fases de Leitura Aberta , Peptídeo Hidrolases/metabolismo , Filogenia , Staphylococcus aureus/genética
20.
Nucleic Acids Res ; 49(15): e89, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34125903

RESUMO

Emerging evidence places small proteins (≤50 amino acids) more centrally in physiological processes. Yet, their functional identification and the systematic genome annotation of their cognate small open-reading frames (smORFs) remains challenging both experimentally and computationally. Ribosome profiling or Ribo-Seq (that is a deep sequencing of ribosome-protected fragments) enables detecting of actively translated open-reading frames (ORFs) and empirical annotation of coding sequences (CDSs) using the in-register translation pattern that is characteristic for genuinely translating ribosomes. Multiple identifiers of ORFs that use the 3-nt periodicity in Ribo-Seq data sets have been successful in eukaryotic smORF annotation. They have difficulties evaluating prokaryotic genomes due to the unique architecture (e.g. polycistronic messages, overlapping ORFs, leaderless translation, non-canonical initiation etc.). Here, we present a new algorithm, smORFer, which performs with high accuracy in prokaryotic organisms in detecting putative smORFs. The unique feature of smORFer is that it uses an integrated approach and considers structural features of the genetic sequence along with in-frame translation and uses Fourier transform to convert these parameters into a measurable score to faithfully select smORFs. The algorithm is executed in a modular way, and dependent on the data available for a particular organism, different modules can be selected for smORF search.


Assuntos
Genoma/genética , Fases de Leitura Aberta/genética , Biossíntese de Proteínas/genética , Ribossomos/genética , Algoritmos , Biologia Computacional , Eucariotos/genética , Anotação de Sequência Molecular , Células Procarióticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA