Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0292946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38032881

RESUMO

Severe infections with potentially fatal outcomes are caused by parasites from the genera Trypanosoma and Leishmania (class Kinetoplastea). The diseases affect people of remote areas in the tropics and subtropics with limited access to adequate health care. Besides insufficient diagnostics, treatment options are limited, with tenuous developments in recent years. Therefore, new antitrypanosomal antiinfectives are required to fight these maladies. In the presented approach, new compounds were developed and tested on the target trypanothione synthetase (TryS). This enzyme is crucial to the kinetoplastids' unique trypanothione-based thiol redox metabolism and thus for pathogen survival. Preceding studies have shown that N5-substituted paullones display antitrypanosomal activity as well as TryS inhibition. Herein, this compound class was further examined regarding the structure-activity relationships (SAR). Diverse benzazepinone derivatives were designed and tested in cell-based assays on bloodstream Trypanosoma brucei brucei (T. b. brucei) and intracellular amastigotes of Leishmania infantum (L. infantum) as well as in enzyme-based assays on L. infantum TryS (LiTryS) and T. b. brucei TryS (TbTryS). While an exchange of just the substituent in the 9-position of paullones led to potent inhibitors on LiTryS and T. b. brucei parasites, new compounds lacking the indole moiety showed a total loss of activity in both assays. Conclusively, the indole as part of the paullone structure is pivotal for keeping the TryS inhibitory and antitrypanosomal activity of this substance class.


Assuntos
Tripanossomicidas , Trypanosoma brucei brucei , Humanos , Benzazepinas , Oxirredução , Indóis/farmacologia , Tripanossomicidas/farmacologia
2.
Front Pharmacol ; 14: 1193282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426813

RESUMO

Introduction: The identification of chemical compounds that interfere with SARS-CoV-2 replication continues to be a priority in several academic and pharmaceutical laboratories. Computational tools and approaches have the power to integrate, process and analyze multiple data in a short time. However, these initiatives may yield unrealistic results if the applied models are not inferred from reliable data and the resulting predictions are not confirmed by experimental evidence. Methods: We undertook a drug discovery campaign against the essential major protease (MPro) from SARS-CoV-2, which relied on an in silico search strategy -performed in a large and diverse chemolibrary- complemented by experimental validation. The computational method comprises a recently reported ligand-based approach developed upon refinement/learning cycles, and structure-based approximations. Search models were applied to both retrospective (in silico) and prospective (experimentally confirmed) screening. Results: The first generation of ligand-based models were fed by data, which to a great extent, had not been published in peer-reviewed articles. The first screening campaign performed with 188 compounds (46 in silico hits and 100 analogues, and 40 unrelated compounds: flavonols and pyrazoles) yielded three hits against MPro (IC50 ≤ 25 µM): two analogues of in silico hits (one glycoside and one benzo-thiazol) and one flavonol. A second generation of ligand-based models was developed based on this negative information and newly published peer-reviewed data for MPro inhibitors. This led to 43 new hit candidates belonging to different chemical families. From 45 compounds (28 in silico hits and 17 related analogues) tested in the second screening campaign, eight inhibited MPro with IC50 = 0.12-20 µM and five of them also impaired the proliferation of SARS-CoV-2 in Vero cells (EC50 7-45 µM). Discussion: Our study provides an example of a virtuous loop between computational and experimental approaches applied to target-focused drug discovery against a major and global pathogen, reaffirming the well-known "garbage in, garbage out" machine learning principle.

3.
ChemMedChem ; 18(10): e202300036, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-36847711

RESUMO

The parasitic kinetoplastid diseases Leishmaniasis, Chagas disease and Human African Trypanosomiasis constitute serious threats for populations throughout the (sub-)tropics. Most available drugs to treat these diseases possess inadequate properties and candidates to fill the drug pipeline are urgently needed. Paullone-N5 -acetamides inhibit trypanothione synthetase (TryS), an essential kinetoplastid enzyme, and exhibit antiparasitic activity in the low micromolar range, but lack the desired selectivity against mammalian cells (selectivity index (SI):<10). With the aim to identify the paullones' moieties responsible for TryS inhibition and bioactivity, we applied molecular simplification and ring disconnection approaches. The new indolylacetamides lost activity against the expected molecular target (TryS) compared to the reference paullone MOL2008 (Leishmania infantum TryS IC50 : 150 nM; Trypanosoma brucei bloodstream form EC50 : 4.3 µM and SI: 2.4). However, several of them retained potency (T. b. brucei EC50 : 2.4-12.0 µM) and improved selectivity (SI: 5 to >25).


Assuntos
Antiprotozoários , Trypanosoma brucei brucei , Trypanosoma cruzi , Tripanossomíase Africana , Animais , Humanos , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Tripanossomíase Africana/tratamento farmacológico , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...