Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(4): 938-952, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38565185

RESUMO

Phenotypic assays have become an established approach to drug discovery. Greater disease relevance is often achieved through cellular models with increased complexity and more detailed readouts, such as gene expression or advanced imaging. However, the intricate nature and cost of these assays impose limitations on their screening capacity, often restricting screens to well-characterized small compound sets such as chemogenomics libraries. Here, we outline a cheminformatics approach to identify a small set of compounds with likely novel mechanisms of action (MoAs), expanding the MoA search space for throughput limited phenotypic assays. Our approach is based on mining existing large-scale, phenotypic high-throughput screening (HTS) data. It enables the identification of chemotypes that exhibit selectivity across multiple cell-based assays, which are characterized by persistent and broad structure activity relationships (SAR). We validate the effectiveness of our approach in broad cellular profiling assays (Cell Painting, DRUG-seq, and Promotor Signature Profiling) and chemical proteomics experiments. These experiments revealed that the compounds behave similarly to known chemogenetic libraries, but with a notable bias toward novel protein targets. To foster collaboration and advance research in this area, we have curated a public set of such compounds based on the PubChem BioAssay dataset and made it available for use by the scientific community.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Bibliotecas de Moléculas Pequenas , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Quimioinformática/métodos , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
2.
ACS Chem Neurosci ; 14(22): 3993-4012, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37903506

RESUMO

Copy number variants (CNVs) that delete or duplicate 30 genes within the 16p11.2 genomic region give rise to a range of neurodevelopmental phenotypes with high penetrance in humans. Despite the identification of this small region, the mechanisms by which 16p11.2 CNVs lead to disease are unclear. Relevant models, such as human cortical organoids (hCOs), are needed to understand the human-specific mechanisms of neurodevelopmental disease. We generated hCOs from 17 patients and controls, profiling 167,958 cells with single-cell RNA-sequencing analysis, which revealed neuronal-specific differential expression of genes outside the 16p11.2 region that are related to cell-cell adhesion, neuronal projection growth, and neurodevelopmental disorders. Furthermore, 16p11.2 deletion syndrome organoids exhibited reduced mRNA and protein levels of RBFOX1, a gene that can also harbor CNVs linked to neurodevelopmental phenotypes. We found that the genes previously shown to be regulated by RBFOX1 are also perturbed in organoids from patients with the 16p11.2 deletion syndrome and thus identified a novel link between independent CNVs associated with neuronal development and autism. Overall, this work suggests convergent signaling, which indicates the possibility of a common therapeutic mechanism across multiple rare neuronal diseases.


Assuntos
Deleção Cromossômica , Variações do Número de Cópias de DNA , Humanos , Variações do Número de Cópias de DNA/genética , Encéfalo , Fenótipo , Organoides , Fatores de Processamento de RNA/genética
3.
ACS Chem Biol ; 17(6): 1401-1414, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35508359

RESUMO

Unbiased transcriptomic RNA-seq data has provided deep insights into biological processes. However, its impact in drug discovery has been narrow given high costs and low throughput. Proof-of-concept studies with Digital RNA with pertUrbation of Genes (DRUG)-seq demonstrated the potential to address this gap. We extended the DRUG-seq platform by subjecting it to rigorous testing and by adding an open-source analysis pipeline. The results demonstrate high reproducibility and ability to resolve the mechanism(s) of action for a diverse set of compounds. Furthermore, we demonstrate how this data can be incorporated into a drug discovery project aiming to develop therapeutics for schizophrenia using human stem cell-derived neurons. We identified both an on-target activation signature, induced by a set of chemically distinct positive allosteric modulators of the N-methyl-d-aspartate (NMDA) receptor, and independent off-target effects. Overall, the protocol and open-source analysis pipeline are a step toward industrializing RNA-seq for high-complexity transcriptomics studies performed at a saturating scale.


Assuntos
Descoberta de Drogas , Transcriptoma , Descoberta de Drogas/métodos , Humanos , RNA , Reprodutibilidade dos Testes , Análise de Sequência de RNA/métodos
4.
Cell Rep ; 27(2): 616-630.e6, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970262

RESUMO

Human pluripotent stem cells (hPSCs) generate a variety of disease-relevant cells that can be used to improve the translation of preclinical research. Despite the potential of hPSCs, their use for genetic screening has been limited by technical challenges. We developed a scalable and renewable Cas9 and sgRNA-hPSC library in which loss-of-function mutations can be induced at will. Our inducible mutant hPSC library can be used for multiple genome-wide CRISPR screens in a variety of hPSC-induced cell types. As proof of concept, we performed three screens for regulators of properties fundamental to hPSCs: their ability to self-renew and/or survive (fitness), their inability to survive as single-cell clones, and their capacity to differentiate. We identified the majority of known genes and pathways involved in these processes, as well as a plethora of genes with unidentified roles. This resource will increase the understanding of human development and genetics. This approach will be a powerful tool to identify disease-modifying genes and pathways.


Assuntos
Sistemas CRISPR-Cas/genética , Testes Genéticos/métodos , Genoma/genética , Células-Tronco Pluripotentes/metabolismo , Humanos
5.
Nat Med ; 24(7): 939-946, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29892062

RESUMO

CRISPR/Cas9 has revolutionized our ability to engineer genomes and conduct genome-wide screens in human cells1-3. Whereas some cell types are amenable to genome engineering, genomes of human pluripotent stem cells (hPSCs) have been difficult to engineer, with reduced efficiencies relative to tumour cell lines or mouse embryonic stem cells3-13. Here, using hPSC lines with stable integration of Cas9 or transient delivery of Cas9-ribonucleoproteins (RNPs), we achieved an average insertion or deletion (indel) efficiency greater than 80%. This high efficiency of indel generation revealed that double-strand breaks (DSBs) induced by Cas9 are toxic and kill most hPSCs. In previous studies, the toxicity of Cas9 in hPSCs was less apparent because of low transfection efficiency and subsequently low DSB induction3. The toxic response to DSBs was P53/TP53-dependent, such that the efficiency of precise genome engineering in hPSCs with a wild-type P53 gene was severely reduced. Our results indicate that Cas9 toxicity creates an obstacle to the high-throughput use of CRISPR/Cas9 for genome engineering and screening in hPSCs. Moreover, as hPSCs can acquire P53 mutations14, cell replacement therapies using CRISPR/Cas9-enginereed hPSCs should proceed with caution, and such engineered hPSCs should be monitored for P53 function.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Engenharia Genética , Células-Tronco Pluripotentes/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Quebras de DNA de Cadeia Dupla , Deleção de Genes , Humanos , RNA Guia de Cinetoplastídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica , Receptor fas/genética , Receptor fas/metabolismo
6.
Cell Stem Cell ; 19(6): 703-708, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27912091

RESUMO

Zika virus (ZIKV) can cross the placental barrier, resulting in infection of the fetal brain and neurological defects including microcephaly. The cellular tropism of ZIKV and the identity of attachment factors used by the virus to gain access to key cell types involved in pathogenesis are under intense investigation. Initial studies suggested that ZIKV preferentially targets neural progenitor cells (NPCs), providing an explanation for the developmental phenotypes observed in some pregnancies. The AXL protein has been nominated as a key attachment factor for ZIKV in several cell types including NPCs. However, here we show that genetic ablation of AXL has no effect on ZIKV entry or ZIKV-mediated cell death in human induced pluripotent stem cell (iPSC)-derived NPCs or cerebral organoids. These findings call into question the utility of AXL inhibitors for preventing birth defects after infection and suggest that further studies of viral attachment factors in NPCs are needed.


Assuntos
Cérebro/patologia , Deleção de Genes , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/virologia , Neuroproteção , Organoides/virologia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Infecção por Zika virus/prevenção & controle , Morte Celular , Técnicas de Inativação de Genes , Humanos , Células-Tronco Neurais/patologia , Organoides/metabolismo , Organoides/patologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Infecção por Zika virus/patologia , Receptor Tirosina Quinase Axl
7.
Dev Biol ; 387(2): 229-39, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24468295

RESUMO

Sequential pulses of the steroid hormone ecdysone regulate the major developmental transitions in Drosophila, and the duration of each developmental stage is determined by the length of time between ecdysone pulses. Ecdysone regulates biological responses by directly initiating target gene transcription. In turn, these transcriptional responses are known to be self-limiting, with mechanisms in place to ensure regression of hormone-dependent transcription. However, the biological significance of these transcriptional repression mechanisms remains unclear. Here we show that the chromatin remodeling protein INO80 facilitates transcriptional repression of ecdysone-regulated genes during prepupal development. In ino80 mutant animals, inefficient repression of transcriptional responses to the late larval ecdysone pulse delays the onset of the subsequent prepupal ecdysone pulse, resulting in a significantly longer prepupal stage. Conversely, increased expression of ino80 is sufficient to shorten the prepupal stage by increasing the rate of transcriptional repression. Furthermore, we demonstrate that enhancing the rate of regression of the mid-prepupal competence factor ßFTZ-F1 is sufficient to determine the timing of head eversion and thus the duration of prepupal development. Although ino80 is conserved from yeast to humans, this study represents the first characterization of a bona fide ino80 mutation in any metazoan, raising the possibility that the functions of ino80 in transcriptional repression and developmental timing are evolutionarily conserved.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Ecdisona/genética , Metamorfose Biológica/genética , Fatores de Transcrição/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/genética , Ecdisona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Controladores do Desenvolvimento/genética , Genes Reguladores/genética , Mutação , Receptores de Esteroides/metabolismo , Transcrição Gênica
8.
Genetics ; 196(3): 767-80, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24374353

RESUMO

Steroid hormones trigger a wide variety of biological responses through stage- and tissue-specific activation of target gene expression. The mechanisms that provide specificity to systemically released pulses of steroids, however, remain poorly understood. We previously completed a forward genetic screen for mutations that disrupt the destruction of larval salivary glands during metamorphosis in Drosophila melanogaster, a process triggered by the steroid hormone 20-hydroxyecdysone (ecdysone). Here, we characterize 10 complementation groups mapped to genes from this screen. Most of these mutations disrupt the ecdysone-induced expression of death activators, thereby failing to initiate tissue destruction. However, other responses to ecdysone, even within salivary glands, occur normally in mutant animals. Many of these newly identified regulators of ecdysone signaling, including brwd3, med12, med24, pak, and psg2, represent novel components of the ecdysone-triggered transcriptional hierarchy. These genes function combinatorially to provide specificity to ecdysone pulses, amplifying the hormonal cue in a stage-, tissue-, and target gene-specific manner. Most of the ecdysone response genes identified in this screen encode homologs of mammalian nuclear receptor coregulators, demonstrating an unexpected degree of functional conservation in the mechanisms that regulate steroid signaling between insects and mammals.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Ecdisona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Evolução Molecular , Genes de Insetos , Metamorfose Biológica/efeitos dos fármacos , Mutação , Especificidade de Órgãos , Fenótipo , Glândulas Salivares/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
G3 (Bethesda) ; 3(12): 2313-9, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24170736

RESUMO

Mutagenesis screens are a staple of classical genetics. Chemical-induced mutations, however, are often difficult and time-consuming to identify. Here, we report that recombination analysis with pairs of dominant visible markers provides a rapid and reliable strategy to map mutations in Drosophila melanogaster. This method requires only two generations and a total of six crosses in vials to estimate the genetic map position of the responsible lesion with high accuracy. This genetic map position can then be reliably used to identify the mutated gene through complementation testing with an average of nine deficiencies and Sanger sequencing. We have used this approach to successfully map a collection of mutations from an ethyl methanesulfonate-based mutagenesis screen on the third chromosome. We propose that this method also may be used in conjunction with whole-genome sequencing, particularly when multiple independent alleles of the mutated locus are not available. By facilitating the rapid identification of mutated genes, our mapping strategy removes a primary obstacle to the widespread use of powerful chemical mutagenesis screens to understand fundamental biological phenomena.


Assuntos
Mapeamento Cromossômico/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Recombinação Genética/genética , Animais , Drosophila/efeitos dos fármacos , Drosophila/genética , Metanossulfonato de Etila/farmacologia , Genes Dominantes , Marcadores Genéticos , Mutagênese/efeitos dos fármacos , Mutação , Recombinação Genética/efeitos dos fármacos , Glândulas Salivares/efeitos dos fármacos , Glândulas Salivares/fisiologia
10.
PLoS Genet ; 8(11): e1003085, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209440

RESUMO

Steroid hormones act, through their respective nuclear receptors, to regulate target gene expression. Despite their critical role in development, physiology, and disease, however, it is still unclear how these systemic cues are refined into tissue-specific responses. We identified a mutation in the evolutionarily conserved DEAD box RNA helicase belle/DDX3 that disrupts a subset of responses to the steroid hormone ecdysone during Drosophila melanogaster metamorphosis. We demonstrate that belle directly regulates translation of E74A, an ets transcription factor and critical component of the ecdysone-induced transcriptional cascade. Although E74A mRNA accumulates to abnormally high levels in belle mutant tissues, no E74A protein is detectable, resulting in misregulation of E74A-dependent ecdysone response genes. The accumulation of E74A mRNA in belle mutant salivary glands is a result of auto-regulation, fulfilling a prediction made by Ashburner nearly 40 years ago. In this model, Ashburner postulates that, in addition to regulating secondary response genes, protein products of primary response genes like E74A also inhibit their own ecdysone-induced transcription. Moreover, although ecdysone-triggered transcription of E74A appears to be ubiquitous during metamorphosis, belle-dependent translation of E74A mRNA is spatially restricted. These results demonstrate that translational control plays a critical, and previously unknown, role in refining transcriptional responses to the steroid hormone ecdysone.


Assuntos
RNA Helicases DEAD-box , Proteínas de Ligação a DNA , Drosophila melanogaster , Ecdisona , Biossíntese de Proteínas , Fatores de Transcrição , Animais , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Ecdisona/genética , Ecdisona/metabolismo , Ecdisona/fisiologia , Expressão Gênica , Metamorfose Biológica , Mutação , Especificidade de Órgãos , Glândulas Salivares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
11.
Theor Appl Genet ; 118(2): 295-303, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18839129

RESUMO

Bread wheat (Triticum aestivum L.) produces glutenin storage proteins in the endosperm. The HMW glutenins confer distinct viscoelastic properties to bread dough. The genetics of HMW glutenin proteins have been extensively studied, and information has accumulated about individual subunits, chromosomal locations and DNA sequences, but little is known about the regulators of the HMW glutenins. This investigation addressed the question of glutenin regulators. Expression of the glutenins was analyzed using QRT-PCR in ditelosomic (dt) Chinese Spring (CS) lines. Primers were designed for each of 4 CS glutenin genes and a control, non-storage protein endosperm-specific gene Agp-L (ADP-glucose pyrophosphorylase). Each line represents CS wheat, lacking one chromosome arm. The effect of a missing arm could feasibly cause an increase, decrease or no change in expression. For each HMW glutenin, results indicated there were, on average, 8 chromosome arms with an up-regulatory effect and only one instance of a down-regulatory effect. There were significant correlations between orthologous and paralogous HMW glutenins for effects of chromosome groups B and D. Some or all the glutenin alleles shared regulatory loci on chromosome arms 2BS, 7BS, 4DS, 5DS and 6DS, and Agp-L shared regulatory loci with glutenins on arms 7AS, 7BS, 2DS, 3DS, 4DS and 5DS. These results suggest a few chromosome arms contain putative regulatory genes affecting the expression of conserved cis elements of 4 HMW glutenin and Agp-L genes in CS. Regulation by common genes implies the regulators have diverged little from the common wheat ancestor, and furthermore, some regulation may be shared by endosperm-specific-genes. Significant common regulators have practical implications.


Assuntos
Regulação da Expressão Gênica de Plantas , Glutens/genética , Proteínas de Plantas/genética , Triticum/genética , Glutens/metabolismo , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...