Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6915, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938557

RESUMO

Extracellular vesicles (EVs), including exosomes, are recognized as promising functional targets involved in disease mechanisms. However, the intravital heterogeneity of EVs remains unclear, and the general limitation for analyzing EVs is the need for a certain volume of biofluids. Here, we present cellulose nanofiber (CNF) sheets to resolve these issues. We show that CNF sheets capture and preserve EVs from ~10 µL of biofluid and enable the analysis of bioactive molecules inside EVs. By attaching CNF sheets to moistened organs, we collect EVs in trace amounts of ascites, which is sufficient to perform small RNA sequence analyses. In an ovarian cancer mouse model, we demonstrate that CNF sheets enable the detection of cancer-associated miRNAs from the very early phase when mice did not have apparent ascites, and that EVs from different locations have unique miRNA profiles. By performing CNF sheet analyses in patients, we identify further location-based differences in EV miRNA profiles, with profiles reflecting disease conditions. We conduct spatial exosome analyses using CNF sheets to reveal that ascites EVs from cancer patients exhibit location-dependent heterogeneity. This technique could provide insights into EV biology and suggests a clinical strategy contributing to cancer diagnosis, staging evaluation, and therapy planning.


Assuntos
Exossomos , Vesículas Extracelulares , MicroRNAs , Nanofibras , Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , Exossomos/genética , Ascite , MicroRNAs/genética , Celulose , Neoplasias Ovarianas/genética
2.
Sci Adv ; 9(27): eade6958, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418532

RESUMO

Cancer cell-derived extracellular vesicles (EVs) have unique protein profiles, making them promising targets as disease biomarkers. High-grade serous ovarian carcinoma (HGSOC) is the deadly subtype of epithelial ovarian cancer, and we aimed to identify HGSOC-specific membrane proteins. Small EVs (sEVs) and medium/large EVs (m/lEVs) from cell lines or patient serum and ascites were analyzed by LC-MS/MS, revealing that both EV subtypes had unique proteomic characteristics. Multivalidation steps identified FRα, Claudin-3, and TACSTD2 as HGSOC-specific sEV proteins, but m/lEV-associated candidates were not identified. In addition, for using a simple-to-use microfluidic device for EV isolation, polyketone-coated nanowires (pNWs) were developed, which efficiently purify sEVs from biofluids. Multiplexed array assays of sEVs isolated by pNW showed specific detectability in cancer patients and predicted clinical status. In summary, the HGSOC-specific marker detection by pNW are a promising platform as clinical biomarkers, and these insights provide detailed proteomic aspects of diverse EVs in HGSOC patients.


Assuntos
Vesículas Extracelulares , Nanofios , Neoplasias Ovarianas , Feminino , Humanos , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Vesículas Extracelulares/metabolismo , Biomarcadores , Proteínas , Neoplasias Ovarianas/metabolismo
3.
ACS Nano ; 17(3): 2235-2244, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36655866

RESUMO

Extracellular vesicles (EVs) have promising potential as biomarkers for early cancer diagnosis. The EVs have been widely studied as biological cargo containing essential biological information not only from inside vesicles such as nucleic acids and proteins but also from outside vesicles such as membrane proteins and glycolipids. Although various methods have been developed to isolate EVs with high yields such as captures based on density, size, and immunoaffinity, different measurement systems are needed to analyze EVs after isolation, and a platform that enables all-in-one analysis of EVs from capture to detection in multiple samples is desired. Since a nanowire-based approach has shown an effective capability for capturing EVs via surface charge interaction compared to other conventional methods, here, we upgraded the conventional well plate assay to an all-in-one nanowire-integrated well plate assay system (i.e., a nanowire assay system) that enables charge-based EV capture and EV analysis of membrane proteins. We applied the nanowire assay system to analyze EVs from brain tumor organoids in which tumor environments, including vascular formations, were reconstructed, and we found that the membrane protein expression ratio of CD31/CD63 was 1.42-fold higher in the tumor organoid-derived EVs with a p-value less than 0.05. Furthermore, this ratio for urine samples from glioblastoma patients was 2.25-fold higher than that from noncancer subjects with a p-value less than 0.05 as well. Our results demonstrated that the conventional well plate method integrated with the nanowire-based EV capture approach allows users not only to capture EVs effectively but also to analyze them in one assay system. We anticipate that the all-in-one nanowire assay system will be a powerful tool for elucidating EV-mediated tumor-microenvironment crosstalk.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Nanofios , Humanos , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo , Neoplasias Encefálicas/diagnóstico , Proteínas de Membrana/metabolismo , Microambiente Tumoral
4.
Lab Chip ; 22(16): 2971-2977, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35713150

RESUMO

This paper is the first report of a non-competitive fluorescence polarization immunoassay (NC-FPIA) using a peptide as a tracer. The NC-FPIA can easily and quickly quantify the target after simply mixing them together. This feature is desirable for point-of-need applications such as clinical diagnostics, infectious disease screening, on-site analysis for food safety, etc. In this study, the NC-FPIA was applied to detect CD9, which is one of the exosome markers. We succeeded in detecting not only CD9 but also CD9 expressing exosomes derived from HeLa cells. This method can be applied to various targets if a tracer for the target can be prepared, and expectations are high for its future uses.


Assuntos
Peptídeos , Polarização de Fluorescência , Imunoensaio de Fluorescência por Polarização/métodos , Células HeLa , Humanos , Tetraspanina 29
5.
ACS Appl Mater Interfaces ; 13(15): 17316-17329, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33793202

RESUMO

There are no accurate mass screening methods for early detection of central nervous system (CNS) tumors. Recently, liquid biopsy has received a lot of attention for less-invasive cancer screening. Unlike other cancers, CNS tumors require efforts to find biomarkers due to the blood-brain barrier, which restricts molecular exchange between the parenchyma and blood. Additionally, because a satisfactory way to collect urinary biomarkers is lacking, urine-based liquid biopsy has not been fully investigated despite the fact that it has some advantages compared to blood or cerebrospinal fluid-based biopsy. Here, we have developed a mass-producible and sterilizable nanowire-based device that can extract urinary microRNAs efficiently. Urinary microRNAs from patients with CNS tumors (n = 119) and noncancer individuals (n = 100) were analyzed using a microarray to yield comprehensive microRNA expression profiles. To clarify the origin of urinary microRNAs of patients with CNS tumors, glioblastoma organoids were generated. Glioblastoma organoid-derived differentially expressed microRNAs (DEMs) included 73.4% of the DEMs in urine of patients with parental tumors but included only 3.9% of those in urine of noncancer individuals, which suggested that many CNS tumor-derived microRNAs could be identified in urine directly. We constructed the diagnostic model based on the expression of the selected microRNAs and found that it was able to differentiate patients and noncancer individuals at a sensitivity and specificity of 100 and 97%, respectively, in an independent dataset. Our findings demonstrate that urinary microRNAs extracted with the nanowire device offer a well-fitted strategy for mass screening of CNS tumors.


Assuntos
Neoplasias do Sistema Nervoso Central/urina , MicroRNAs/urina , Nanofios , Urinálise/instrumentação , Neoplasias do Sistema Nervoso Central/genética , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/urina , Humanos , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...