Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 52(6): 3431-3439, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29451383

RESUMO

Arsenic contamination in groundwater is pervasive throughout deltaic regions of Southeast Asia and threatens the health of millions. The speciation of As in sediments overlying contaminated aquifers is poorly constrained. Here, we investigate the chemical and mineralogical compositions of sediment cores collected from the Mekong Delta in Vietnam, elucidate the speciation of iron and arsenic, and relate them to the sediment depositional environment. Gradual dissolution of ferric (oxyhydr)oxides with depth is observed down to 7 m, corresponding to the establishment of reducing conditions. Within the reduced sediment, layers originating from marine, coastal or alluvial depositional environments are identified and their age is consistent with a late Holocene transgression in the Mekong Delta. In the organic matter- and sulfur-rich layers, arsenic is present in association with organic matter through thiol-bonding and in the form of arsenian pyrite. The highest arsenic concentration (34-69 ppm) is found in the peat layer at 16 m and suggests the accumulation of arsenic due to the formation of thiol-bound trivalent arsenic (40-55%) and arsenian pyrite (15-30%) in a paleo-mangrove depositional environment (∼8079 yr BP). Where sulfur is limited, siderite is identified, and oxygen- and thiol-bound trivalent arsenic are the predominant forms. It is also worth noting that pentavalent arsenic coordinated to oxygen is ubiquitous in the sediment profile, even in reduced sediment layers. But the identity of the oxygen-bound arsenic species remains unknown. This work shows direct evidence of thiol-bound trivalent arsenic in the Mekong Delta sediments and provides insight to refine the current model of the origin, deposition, and release of arsenic in the alluvial aquifers of the Mekong Delta.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Vietnã
2.
J Hazard Mater ; 321: 764-772, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27720469

RESUMO

Acid mine drainages (AMD) are major sources of pollution to the environment. Passive bio-remediation technologies involving sulfate-reducing bacteria (SRB) are promising for treating arsenic contaminated waters. However, mechanisms of biogenic As-sulfide formation need to be better understood to decontaminate AMDs in acidic conditions. Here, we show that a high-As AMD effluent can be decontaminated by an indigenous SRB consortium. AMD water from the Carnoulès mine (Gard, France) was incubated with the consortium under anoxic conditions and As, Zn and Fe concentrations, pH and microbial activity were monitored during 94days. Precipitated solids were analyzed using electron microscopy (SEM/TEM-EDXS), and Extended X-Ray Absorption Fine Structure (EXAFS) spectroscopy at the As K-edge. Total removal of arsenic and zinc from solution (1.06 and 0.23mmol/L, respectively) was observed in two of the triplicates. While Zn precipitated as ZnS nanoparticles, As precipitated as amorphous orpiment (am-AsIII2S3) (33-73%), and realgar (AsIIS) (0-34%), the latter phase exhibiting a particular nanowire morphology. A minor fraction of As is also found as thiol-bound AsIII (14-23%). We propose that the formation of the AsIIS nanowires results from AsIII2S3 reduction by biogenic H2S, enhancing the efficiency of As removal. The present description of As immobilization may help to set the basis for bioremediation strategies using SRB.


Assuntos
Arsênio/isolamento & purificação , Resíduos Industriais/análise , Mineração , Bactérias Redutoras de Enxofre/metabolismo , Poluentes Químicos da Água/metabolismo , Zinco/isolamento & purificação , Arsenicais/química , Arsenicais/isolamento & purificação , Biodegradação Ambiental , Descontaminação , Desulfovibrio , Concentração de Íons de Hidrogênio , Nanofios , Sulfetos/química , Sulfetos/isolamento & purificação , Poluentes Químicos da Água/química , Difração de Raios X , Compostos de Zinco/química , Compostos de Zinco/isolamento & purificação
3.
Environ Sci Technol ; 51(1): 150-158, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27966928

RESUMO

Pyrite is a ubiquitous mineral in reducing environments and is well-known to incorporate trace elements such as Co, Ni, Se, Au, and commonly As. Indeed, As-bearing pyrite is observed in a wide variety of sedimentary environments, making it a major sink for this toxic metalloid. Based on the observation of natural hydrothermal pyrites, As-I is usually assigned to the occupation of tetrahedral S-I sites, with the same oxidation state as in arsenopyrite (FeAsS), although rare occurrences of AsIII and AsII have been reported. However, the modes of As incorporation into pyrite during its crystallization under low-temperature diagenetic conditions have not yet been elucidated because arsenic acts as an inhibitor for pyrite nucleation at ambient temperature. Here, we provide evidence from X-ray absorption spectroscopy for AsII,III incorporation into pyrite at octahedral FeII sites and for As-I at tetrahedral S-I sites during crystallization at ambient temperature. Extended X-ray absorption fine structure (EXAFS) spectra of these As-bearing pyrites are explained by local structure models obtained using density functional theory (DFT), assuming incorporation of As at the Fe and S sites, as well as local clustering of arsenic. Such observations of As-I incorporation at ambient temperature can aid in the understanding of the early formation of authigenic arsenian pyrite in subsurface sediments. Moreover, evidence for substitution of AsII,III for Fe in our synthetic samples raises questions about both the possible occurrence and the geochemical reactivity of such As-bearing pyrites in low-temperature subsurface environments.


Assuntos
Arsênio , Compostos Ferrosos , Ferro/química , Oxirredução , Temperatura , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...