Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
Cytotechnology ; 75(3): 219-229, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37163134

RESUMO

Immunoglobulin A (IgA) has been showing potential as a new therapeutic antibody. However, recombinant IgA suffers from low yield. Supplementation of the medium is an effective approach to improving the production and quality of recombinant proteins. In this study, we adapted IgA1-producing CHO-K1 suspension cells to a high concentration (150 mM) of different disaccharides, namely sucrose, maltose, lactose, and trehalose, to improve the production and quality of recombinant IgA1. The disaccharide-adapted cell lines had slower cell growth rates, but their cell viability was extended compared to the nonadapted IgA1-producing cell line. Glucose consumption was exhausted in all cell lines except for the maltose-adapted one, which still contained glucose even after the 9th day of culturing. Lactate production was higher among the disaccharide-adapted cell lines. The specific productivity of the maltose-adapted IgA1-producing line was 4.5-fold that of the nonadapted line. In addition, this specific productivity was higher than in previous productions of recombinant IgA1 with a lambda chain. Lastly, secreted IgA1 aggregated in all cell lines, which may have been caused by self-aggregation. This aggregation was also found to begin inside the cells for maltose-adapted cell line. These results suggest that a high concentration of disaccharide-supplemented induced hyperosmolarity in the IgA1-producing CHO-K1 cell lines. In addition, the maltose-adapted CHO-K1 cell line benefited from having an additional source of carbohydrate. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-023-00571-5.

2.
Biochem Biophys Res Commun ; 659: 54-61, 2023 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-37037066

RESUMO

Previously, we demonstrated the utility of a recombinant chimeric flavivirus (DV2ChimV), which carries the premembrane (prM) and envelope (E) genes of a type 2 DENV clinical (Thai) isolate on a backbone of Japanese encephalitis virus, for evaluating the protective efficacy of antidengue envelope antibodies both in vitro and in vivo. Here, to assess the potential use of this model for pathological studies, we aimed to characterize interferon-α/ß-γ-receptor double-knockout mice (IFN-α/ß/γR dKO mice) infected with DV2ChimV. Vascular leakage and bone marrow suppression are unique features of severe dengue. In the current model, DV2ChimV caused vascular leakage in the liver and intestine at the moribund stage. High levels of virus were detected in the bone marrow, and strong bone marrow suppression (i.e., disappearance of megakaryocytes and erythroblastic islets) was observed. These observations suggest that the DV2ChimV-infected mouse model mimics the vascular leakage and bone marrow suppression observed in human cases.


Assuntos
Vírus da Dengue , Dengue , Flavivirus , Camundongos , Humanos , Animais , Medula Óssea/patologia , Camundongos Knockout , Anticorpos Antivirais
3.
J Clin Virol ; 160: 105377, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682339

RESUMO

BACKGROUND: Since the first isolation of rubella virus (RuV) in 1962, comprehensive data regarding the quantitative evaluation of RuV shedding remain unavailable. In this study, we evaluated the shedding of viral RNA and infectious virus in patients with acute RuV infection. STUDY DESIGN: We analyzed 767 specimens, including serum/plasma, peripheral blood mononuclear cells (PBMCs), throat swabs, and urine, obtained from 251 patients with rubella. The viral RNA load and the presence of infectious RuV were determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and virus isolation. RESULTS: Virus excretion peaked 0-2 days after rash onset and decreased over time. The median viral RNA load dropped to an undetectable level on day 3 after rash onset in serum/plasma, day 2 in PBMCs, days 10-13 in throat swabs, and days 6-7 in urine. Infectious virus could be isolated for up to day 2 after rash onset in serum/plasma, day 1 in PBMCs, days 8-9 in throat swabs, and days 4-5 in urine. The minimum viral RNA load that allowed virus isolation was 961 copies/mL in serum/plasma, 784 copies/mL in PBMCs, 650 copies/mL in throat swabs, and 304 copies/mL in urine. A higher viral RNA load indicated a higher likelihood of the presence of infectious virus. CONCLUSION: These findings would contribute to improve algorithms for rubella surveillance and diagnosis. In addition, this study indicates that the results of RT-qPCR enable efficient rubella control by estimating candidate patients excreting infectious virus, which could help prevent viral transmission at an early stage and eliminate rubella ultimately.


Assuntos
Exantema , Rubéola (Sarampo Alemão) , Humanos , Vírus da Rubéola/genética , RNA Viral/genética , Leucócitos Mononucleares , Rubéola (Sarampo Alemão)/diagnóstico , Eliminação de Partículas Virais
4.
J Virol Methods ; 294: 114181, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33984395

RESUMO

Polyethyleneimine (PEI) possesses various molecular weights (MWs), structures, and virus capture capacities. However, whether PEI can capture porcine circovirus (PCV) and animal cell-derived prion protein (PrPC) that may contaminate source materials is unclear. Therefore, we conducted a feasibility study to assess the effectiveness of PEI in removing PCV and PrPC as a model of pathogenic prions. The removal performance of PCV was evaluated by quantitative PCR using PEIs with various MWs, structures, and ion exchange capacities in Tris (pH 7.5) and acetate (pH 5.5) buffers under neutral (pH 7.5) to acidic (pH 5.5) conditions. Removal performances of PrPC were also evaluated by western blotting using PEIs with various MWs and structures. Tris buffer did not affect the ability of PEI-modified resins to remove PCV, whereas acetate buffer affected removal performances, except those of PEI-10K-Br and PEI-70K-Br, which showed high ion-exchange capacities. PrPC was captured by PEIs with high MWs, especially PEI-70K-Br, which was the most effective. The results of this feasibility study suggested that PEI-modified resin could remove PCV and PrPC. PEI-70K-Br with an ion-exchange capacity of at least 0.3 meq/mL appears suitable as a PEI molecule for pathogen capture or removal of PCV or PrPC from biological materials.


Assuntos
Circovirus , Polietilenoimina , Animais , Proteínas Priônicas , Suínos
5.
Biologics ; 15: 87-94, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33880014

RESUMO

PURPOSE: Highly pathogenic avian influenza viruses are a threat to human health. Although donor populations have not experienced pandemic, they have been immunized by natural infections and/or vaccinations of influenza viruses such as A/H1N1, A/H3N2, and B. Therefore, it is considered that human intravenous immunoglobulin (IVIG) derived from healthy donors does not include IgG against avian influenza viruses. However, cross-reactivity has not been evaluated yet. In this study, cross-reactivity against the avian influenza virus A/H5N1, A/H7N1, A/H7N2, A/H7N7, A/H7N9, and A/H10N9 was evaluated. MATERIALS AND METHODS: Several lots of IVIG derived from healthy donors in Japan were tested for virus neutralization using single- or multi-cycle virus neutralizing (S-VN or M-VN) assays that evaluate the infection-step associated with HA or the infection and propagation steps associated with HA and NA, respectively. In addition, anti-NA activities were evaluated by inhibiting the enzymatic activity in NAI assays. RESULTS: IVIG lots showed high neutralizing activities against three A/H5N1 strains in M-VN assays, whereas activities in S-VN assays were unstable. In addition, A/H7N2 was also neutralized in S-VN and M-VN assays, with higher activity in M-VN than in S-VN assays. A/H7N1 was neutralized in S-VN and M-VN assays. In contrast, weak or no activity against A/H7N7, A/H7N9, and A/H10N9 was observed in S-VN and M-VN assays. NAI assay results show that IVIG lots had inhibitory activities against N1 and N2; however, N2 activities differed depending on the strain. In contrast, no activities were observed against N7 and N9. CONCLUSION: These results suggest that IVIG lots have neutralizing activity against avian influenza viruses during the virus propagation step, except for one strain, although no or weak activity was observed during the infection step.

6.
Viruses ; 13(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504090

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is a novel tick-borne infectious disease, therefore, the information on the whole genome of the SFTS virus (SFTSV) is still limited. This study demonstrates a nearly whole genome of the SFTSV identified in Osaka in 2017 and 2018 by next-generation sequencing (NGS). The evolutionary lineage of two genotypes, C5 and J1, was identified in Osaka. The first case in Osaka belongs to suspect reassortment (L:C5, M:C5, S:C4), the other is genotype J1 (L: J1, M: J1, S: J1) according to the classification by a Japanese group. C5 was identified in China, indicating that C5 identified in this study may be transmitted by birds between China and Japan. This study revealed that different SFTSV genotypes were distributed in two local areas, suggesting the separate or focal transmission patterns in Osaka.


Assuntos
Phlebovirus/classificação , Phlebovirus/genética , Filogenia , Febre Grave com Síndrome de Trombocitopenia/virologia , Evolução Molecular , Genoma Viral/genética , Genótipo , Humanos , Japão , Phlebovirus/isolamento & purificação , RNA Viral/genética
7.
Sci Rep ; 10(1): 21561, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33299049

RESUMO

In a secondary dengue virus (DENV) infection, the presence of non-neutralizing antibodies (Abs), developed during a previous infection with a different DENV serotype, is thought to worsen clinical outcomes by enhancing viral production. This phenomenon is called antibody-dependent enhancement (ADE) of infection, and it has delayed the development of therapeutic Abs and vaccines against DENV, as they must be evaluated for the potential to induce ADE. Unfortunately, limited replication of DENV clinical isolates in vitro and in experimental animals hinders this evaluation process. We have, therefore, constructed a recombinant chimeric flavivirus (DV2ChimV), which carries premembrane (prM) and envelope (E) genes of type 2 DENV (DENV-2) R05-624 clinical (Thai) isolate in a backbone of Japanese encephalitis virus (Nakayama strain). DENV E-protein is the most important viral target, not only for neutralizing Abs, but also for infection-enhancing Abs. In contrast to DENV-2 R05-624, DV2ChimV replicated efficiently in cultured mammalian cells and was lethal in interferon-α/ß-γ-receptor double-knockout mice. With DV2ChimV, we were able to perform neutralization assays, in vitro and in vivo ADE assays, and in vivo protection assays. These results suggest that the chimeric virus is a powerful tool for evaluation of Abs against DENV.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Dengue/metabolismo , Dengue/imunologia , Flavivirus/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Chlorocebus aethiops , Dengue/virologia , Vírus da Dengue/genética , Camundongos , Células Vero , Envelope Viral/imunologia , Proteínas do Envelope Viral/genética
8.
Toxins (Basel) ; 12(5)2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392791

RESUMO

Botulinum neurotoxin (BoNT) is the most potent natural toxin known. Of the seven BoNT serotypes (A to G), types A, B, E, and F cause human botulism. Treatment of human botulism requires the development of effective toxin-neutralizing antibodies without side effects such as serum sickness and anaphylaxis. In this study, we generated fully human monoclonal antibodies (HuMAbs) against serotype B BoNT (BoNT/B1) using a murine-human chimera fusion partner cell line named SPYMEG. Of these HuMAbs, M2, which specifically binds to the light chain of BoNT/B1, showed neutralization activity in a mouse bioassay (approximately 10 i.p. LD50/100 µg of antibody), and M4, which binds to the C-terminal of heavy chain, showed partial protection. The combination of two HuMAbs, M2 (1.25 µg) and M4 (1.25 µg), was able to completely neutralize BoNT/B1 (80 i.p. LD50) with a potency greater than 80 i.p. LD50/2.5 µg of antibodies, and was effective both prophylactically and therapeutically in the mouse model of botulism. Moreover, this combination showed broad neutralization activity against three type B subtypes, namely BoNT/B1, BoNT/B2, and BoNT/B6. These data demonstrate that the combination of M2 and M4 is promising in terms of a foundation for new human therapeutics for BoNT/B intoxication.


Assuntos
Anticorpos Monoclonais/farmacologia , Toxinas Botulínicas Tipo A/antagonistas & inibidores , Botulismo/prevenção & controle , Anticorpos Amplamente Neutralizantes/farmacologia , Clostridium botulinum/efeitos dos fármacos , Animais , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Sítios de Ligação de Anticorpos , Toxinas Botulínicas Tipo A/imunologia , Botulismo/imunologia , Botulismo/microbiologia , Anticorpos Amplamente Neutralizantes/imunologia , Clostridium botulinum/imunologia , Modelos Animais de Doenças , Quimioterapia Combinada , Epitopos , Feminino , Humanos , Hibridomas , Camundongos , Testes de Neutralização , Ligação Proteica
10.
Vaccine ; 37(36): 5225-5232, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31358406

RESUMO

BACKGROUND: Herpes zoster (HZ) is caused by reactivation of a latent varicella zoster virus (VZV). The potential to develop HZ increases with age due to waning of memory cell-mediated immunity (CMI), mainly the CD4 response. Therefore, VZV-CD4-memory T cells (CD4-M) count in blood could serve as a barometer for HZ protection. However, direct quantification of these cells is known to be difficult because they are few in number in the blood. We thus developed a method to measure the proliferation level of CD4-M cells responding to VZV antigen in whole blood culture. METHODS: Blood samples were collected from 32 children (2-15 years old) with or without a history of varicella infection, 18 young adults (28-45 years old), and 80 elderly (50-86 years old) with a history of varicella infection. The elderly group was vaccinated, and blood samples were taken 2 months and 1 year after VZV vaccination. Then, 1 mL of blood was mixed with VZV, diluted 1/10 in medium, and cultured. CD4-M cells were identified and measured by flow cytometry. RESULTS: There was distinct proliferation of CD3+CD4highCD45RA-RO+ (CD4high-M) cells specific to VZV antigen at day 9. The majority of CD4high-M cells had the effector memory phenotype CCR7- and was granzyme B-positive. CD4high-M cells were detected in blood culture from varicella-immune but not varicella-non-immune children. Meanwhile, a higher level of CD4high-M proliferation was observed in young adults than in the elderly. The CD4high-M proliferation level was boosted 2 months after VZV vaccination and maintained for at least 1 year in the elderly. CONCLUSION: Quantifying VZV responder CD4high -M cell proliferation is a convenient way to measure VZV CMI using small blood volumes. Our method can be applied to measure VZV vaccine-induced CMI in the elderly. Clinical study registry numbers: (www.clinicaltrials.jp) 173532 and 183985.


Assuntos
Vacina contra Herpes Zoster/uso terapêutico , Herpes Zoster/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Hemocultura , Linfócitos T CD4-Positivos/metabolismo , Proliferação de Células/fisiologia , Feminino , Citometria de Fluxo , Humanos , Imunidade Celular/imunologia , Imunidade Celular/fisiologia , Masculino , Pessoa de Meia-Idade , Vacinação/métodos , Vacinas Atenuadas/uso terapêutico
11.
J Gen Appl Microbiol ; 65(4): 197-203, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30814437

RESUMO

Spirotetronate compounds are polyketide secondary metabolites with diverse biological functions, such as antibacterial, antitumor and antiviral activities. Three pure spirotetronate compounds (2EPS-A, -B, -C) isolated from Actinomadura strain 2EPS showed inhibitory activity against dengue virus serotype 2 (DENV-2). 2EPS-A, -B and -C demonstrated the LC50 values of 11.6, 27.5 and 12.0 µg/ml, respectively, in a test of cytotoxicity to Vero cells. The least cytotoxic, 2EPS-B, was further analyzed for its impact on viral propagation in a cell-based replication assay. At a concentration of 6.25 µg/ml, it could reduce the DENV-2 infection in Vero cells by about 94% when cells infected with DENV-2 were exposed to 2EPS-B, whereas direct treatment of DENV-2 with 2EPS-B at the same concentration prior to subsequent infection to Vero cell yielded no inhibition. 2EPS-A, -B an -C showed strong DENV-2 NS2B-NS3 protease inhibition in an in vitro assay, with IC50 values of 1.94 ± 0.18, 1.47 ± 0.15 and 2.51 ± 0.21 µg/ml, respectively. Therefore, the spirotetronate compounds appear to prevent viral replication and viral assembly by inhibition of the viral protease.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Policetídeos/farmacologia , Actinobacteria/química , Animais , Chlorocebus aethiops , Vírus da Dengue/enzimologia , Vírus da Dengue/fisiologia , Concentração Inibidora 50 , Policetídeos/química , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Sorogrupo , Células Vero , Replicação Viral/efeitos dos fármacos
12.
J Vet Med Sci ; 80(6): 1020-1024, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29669959

RESUMO

Influenza B virus has been known to infect humans and other animals, including seals. Vaccination efficacy varies across seasons. Human monoclonal antibodies (mAbs) can be useful for developing novel vaccines, guided by epitope analysis, and can be used therapeutically. Hybridoma technology has been used to make mAbs. Here we evaluated SPYMEG as a fusion partner cell line for human mAb generation specific to influenza B hemagglutinin (HA). SPYMEG is a human/murine myeloma partner cell line that has previously been used to generate human mAbs that recognize the HA of influenza A and B viruses. Peripheral blood mononuclear cells were obtained from 16 volunteers, previously vaccinated with the 2014-2015 trivalent seasonal influenza vaccine, and were fused with SPYMEG to yield hybridomas. The resulting hybridomas were screened for antigen-specific antibody secretion and cloned by limiting dilution. We obtained 32 stable clones secreting anti-influenza B HA human IgG, although most of these clones were obtained from one volunteer (SeaV-29) who had a robust immune response. We conclude that SPYMEG is a good fusion partner cell line, although cloning by limiting dilution may lead to significant loss of hybridomas.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Hibridomas/imunologia , Vírus da Influenza B , Animais , Linhagem Celular , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Humanos , Leucócitos Mononucleares , Camundongos
13.
J Antibiot (Tokyo) ; 71(7): 662-666, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29567952

RESUMO

We identified a new cyclic lipodepsipeptide, cystargamide B (1), from the mycelial extract of a Kaempferia galanga rhizome-derived actinomycete strain, Streptomyces sp. PB013. The planar structure was elucidated based on high resolution fast-atom bombardment mass spectrometry (HRFABMS) spectroscopy and one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopic data. The absolute configurations of the constituent amino acids were determined using advanced Marfey's method. Cystargamide B (1) includes rare structural units: a 5-hydroxytryptophan residue and a 2,3-epoxy fatty acid side chain. Notably, cystargamide B (1) inhibited the protease activity of the NS2B/NS3 complex from dengue virus.


Assuntos
Depsipeptídeos/isolamento & purificação , Depsipeptídeos/farmacologia , Inibidores de Proteases/isolamento & purificação , Inibidores de Proteases/farmacologia , Streptomyces/química , Vírus da Dengue/enzimologia , Espectroscopia de Ressonância Magnética , Conformação Molecular , Rizoma/microbiologia , Espectrometria de Massas de Bombardeamento Rápido de Átomos , Zingiberaceae/microbiologia
14.
J Infect ; 76(2): 177-185, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29248585

RESUMO

OBJECTIVES: Broadly reactive human monoclonal antibodies against the HA stem of influenza A virus are being developed as therapeutic agents as well as to understand the epitopes that are essential for a universal influenza virus vaccine. METHODS: We isolated and characterized two hetero-reactive human monoclonal antibodies from an H3N2 virus-infected human. RESULTS: These antibodies, which are predominantly bound to the HA stem of group 2 HAs, used IGHV3-66 and IGHV4-38-2 germline genes, respectively. They possessed in vitro neutralizing ability, and in vivo protective efficacy against lethal infection with H3N2 or H7N9 virus. Escape mutations revealed that one of the protective antibodies recognized the α-helix A of HA2, and the other recognized the C-terminal portion of the fusion peptide and the ß-sheet that precedes the α-helix A of HA2. CONCLUSIONS: Of many human protective monoclonal antibodies against the HA stem, two human protective monoclonal antibodies were isolated in this study that predominantly recognize epitopes on the HA stem of group 2 and use unique IGHV3-66 and IGHV4-38-2 germline genes.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Epitopos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/isolamento & purificação , Feminino , Células HEK293 , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/isolamento & purificação , Camundongos Endogâmicos BALB C , Mutação , Testes de Neutralização
15.
Biochem Biophys Res Commun ; 495(1): 1221-1226, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29175328

RESUMO

Producing virus at high yield is critically important for development of whole virion inactivated vaccines or live attenuated vaccines. Most dengue virus (DENV) clinical isolates, however, replicate at low levels in cultured cells, which limits their use for vaccine development. The present study examined differences between low-replicating DENV clinical isolates and high-replicating laboratory strains with the aim of engineering high-yield DENV clinical isolates. Construction of a series of recombinant chimeric viruses derived from a high-replicating laboratory DENV type 4 (DENV-4) H241 strain and a clinical isolate revealed that the NS3-NS4B region of H241 conferred a replication advantage in cultured cells. Furthermore, northern blot analysis revealed that this advantage was due to more efficient synthesis of viral RNA. Importantly, replacement of the NS3-NS4B region of H241 did not increase virulence in mice, suggesting that viral production can be increased safely. This study provided information that will facilitate engineering of safe and high-yield viruses that can be used for vaccine development.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Vírus da Dengue/crescimento & desenvolvimento , Vírus da Dengue/genética , Melhoramento Genético/métodos , Carga Viral/genética , Proteínas não Estruturais Virais/metabolismo , Virulência/fisiologia , Recombinação Genética/genética , Carga Viral/fisiologia , Proteínas não Estruturais Virais/genética
16.
Sci Rep ; 7(1): 17735, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29255273

RESUMO

Since the 2017 Southern Hemisphere influenza season, the A(H1N1)pdm09-like virus recommended for use in the vaccine was changed because human, but not ferret, sera distinguish A(H1N1)pdm09 viruses isolated after 2013 from the previously circulating strains. An amino acid substitution, lysine to glutamine, at position 166 (H3 numbering) in the major antigenic site of HA was reported to be responsible for the antigenic drift. Here, we obtained two anti-A(H1N1)pdm09 HA monoclonal antibodies that failed to neutralize viruses isolated after 2013 from a vaccinated volunteer. Escape mutations were identified at position 129, 165, or 166 in the major antigenic site of HA. Competitive growth of the escape mutant viruses with the wild-type virus revealed that some escape mutants possessing an amino acid substitution other than K166Q showed superior growth to that of the wild-type virus. These results suggest that in addition to the K166Q mutation that occurred in epidemic strains, other HA mutations can confer resistance to antibodies that recognize the K166 area, leading to emergence of epidemic strains with such mutations.


Assuntos
Variação Antigênica/genética , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Sequência de Aminoácidos/genética , Substituição de Aminoácidos , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Antígenos Virais/imunologia , Epidemias , Variação Genética/genética , Glutamina , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Influenza Humana/virologia , Lisina
17.
Microbiol Immunol ; 61(9): 371-379, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28752940

RESUMO

Bordetella pertussis causes whooping cough, a severe and prolonged respiratory disease that results inhas high morbidity and mortality rates, particularly in developing countries. The number incidence of whooping cough cases is increasing in many countries despite high vaccine coverage. Causes for the re-emergence of the disease include the limited duration of protection conferred by the acellular pertussis vaccines (aP)s and pathogenic adaptations that involve antigenic divergence from vaccine strains. Therefore, current vaccines therefore need to be improved. In the present study, we focused on five autotransporters: namely SphB1, BatB, SphB2, Phg, and Vag8, which were previously found to be expressed by B. bronchiseptica during the course of infection in rats and examined their protective efficiencies as vaccine antigens. The passenger domains of these proteins were produced in recombinant forms and used as antigens. An intranasal murine challenge assay showed that immunization with a mixture of SphB1 and Vag8 (SV) significantly reduced bacterial load in the lower respiratory tract and a combination of aP and SV acts synergistically in effects of conferring protection against B. pertussis infection, implying that these antigens have potential as components to for improvinge th the currently available acellular pertussis vaccine.


Assuntos
Antígenos de Bactérias/imunologia , Bordetella pertussis/imunologia , Vacina contra Coqueluche/imunologia , Sistemas de Secreção Tipo V/imunologia , Coqueluche/prevenção & controle , Animais , Anticorpos Antibacterianos/imunologia , Variação Antigênica/imunologia , Carga Bacteriana/imunologia , Proteínas de Bactérias/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Sistema Respiratório/imunologia , Sistema Respiratório/microbiologia , Serina Endopeptidases/imunologia , Vacinação , Coqueluche/imunologia , Coqueluche/microbiologia
18.
EBioMedicine ; 17: 182-191, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28286060

RESUMO

Many broadly reactive human monoclonal antibodies against the hemagglutinin (HA) stem of influenza A virus have been developed for therapeutic applications. These antibodies typically inhibit viral entry steps, especially the HA conformational change that is required for membrane fusion. To better understand the mechanisms by which such antibodies inhibit viral replication, we established broadly reactive human anti-HA stem antibodies and determined the properties of these antibodies by examining their reactivity with 18 subtypes of HA, evaluating their in vivo protective efficacy, identifying their epitopes, and characterizing their inhibitory mechanisms. Among the eight human monoclonal antibodies we generated, which recognized at least 3 subtypes of the soluble HA antigens tested, clone S9-1-10/5-1 reacted with 18 subtypes of HA and protected mice from lethal infection with H1N1pdm09, H3N2, H5N1, and H7N9 viruses. This antibody recognized the HA2 helix A in the HA stem, and inhibited virus particle release from infected cells but did not block viral entry completely. These results show that broadly reactive human anti-HA stem antibodies can exhibit protective efficacy by inhibiting virus particle release. These findings expand our knowledge of the mechanisms by which broadly reactive stem-targeting antibodies inhibit viral replication and provide valuable information for universal vaccine development.


Assuntos
Anticorpos Monoclonais/imunologia , Hemaglutininas/imunologia , Vírus da Influenza A/fisiologia , Liberação de Vírus , Animais , Afinidade de Anticorpos , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Cães , Epitopos/imunologia , Células HEK293 , Células HeLa , Hemaglutininas/química , Hemaglutininas/genética , Humanos , Vírus da Influenza A/imunologia , Células Madin Darby de Rim Canino , Camundongos , Replicação Viral
19.
Biologics ; 11: 23-30, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28331286

RESUMO

Influenza viruses A/H1N1, A/H3N2, and B are known seasonal viruses that undergo annual mutation. Intravenous immunoglobulin (IVIG) contains anti-seasonal influenza virus globulins. Although the virus-neutralizing (VN) titer is an indicator of protective antibodies, changes in this titer over extended time periods have yet to be examined. In this study, variations in hemagglutination inhibition (HI) and VN titers against seasonal influenza viruses in IVIG lots over extended time periods were examined. In addition, the importance of monitoring the reactivity of IVIG against seasonal influenza viruses with varying antigenicity was evaluated. A/H1N1, A/H3N2, and B influenza virus strains and IVIG lots manufactured from 1999 to 2014 were examined. The HI titer was measured by standard methods. The VN titer was measured using a micro-focus method. IVIG exhibited significant HI and VN titers against all investigated strains. Our results suggest that the donor population maintains both specific and cross-reactive antibodies against seasonal influenza viruses, except in cases of pandemic viruses, despite major antigen changes. The titers against seasonal influenza vaccine strains, including past strains, were stable over short time periods but increased slowly over time.

20.
Biologics ; 10: 99-102, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27462140

RESUMO

Japanese encephalitis virus (JEV), West Nile virus (WNV), and dengue virus (DenV) are causal agents of Japanese encephalitis, West Nile fever, and dengue fever, respectively. JEV is considered to be indigenized and widespread in Japan, whereas WNV and DenV are not indigenized in Japan. Globulin products seem to reflect the status of the donor population according to antivirus neutralization activity. However, the anti-JEV, -WNV, and -DenV neutralization activities of globulin products derived from donors in Japan have not been clarified. Furthermore, potential candidates for the development of an effective immunotherapeutic drug for encephalitis caused by JEV, WNV, or DenV have also not been identified. Therefore, the aim of this study was to determine the overall status of the donor population in Japan based on globulin products by evaluating anti-JEV, -WNV, and -DenV neutralizing activities of intravenous immunoglobulin. Overall, intravenous immunoglobulin products showed stable neutralizing activity against JEV but showed no or only weak activity against WNV or DenV. These results suggest that the epidemiological level against WNV and DenV in the donor population of Japan is still low, suggesting that these viruses are not yet indigenized. In addition, JEV vaccinations and/or infections in the donor population do not induce a cross-reactive antibody against WNV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...