Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 678: 193-199, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37651888

RESUMO

Severely immunodeficient mice are useful for understanding the pathogenesis of certain tumors and for developing therapeutic agents for such tumors. In addition, engraftment of these mice with human hematopoietic cells can yield information that helps us understand the in vivo molecular mechanisms underlying actual human viral infections. In our present research, we discovered a novel, severely immunodeficient strain of mice having a mutation in exon 57 of the Prkdc gene (PrkdcΔex57/Δex57) in an inbred colony of B10.S/SgSlc mice. Those PrkdcΔex57/Δex57 mice showed thymic hypoplasia and lack of mature T cells and B cells in peripheral lymphoid tissues, resulting in very low levels of production of serum immunoglobulins. In addition, those mice were highly susceptible to influenza viruses due to the lack of acquired immune cells. On the other hand, since they had sufficient numbers of NK cells, they rejected tumor transplants, similarly to Prkdc+/+ mice. Next, we generated Foxn1nu/nuPrkdcΔex57/Δex57Il2rg-/- (NPG) mice on the BALB/cSlc background, which lack all lymphocytes such as T cells, B cells and innate lymphoid cells, including NK cells. As expected, these mice were able to undergo engraftment of human tumor cell lines. These findings suggest that PrkdcΔex57/Δex57 mice will be useful as a novel model of immunodeficiency, while NPG mice will be useful for xenografting of various malignancies.


Assuntos
Imunidade Inata , Síndromes de Imunodeficiência , Humanos , Animais , Camundongos , Células Matadoras Naturais , Linfócitos B , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Proteína Quinase Ativada por DNA
2.
Int Immunol ; 35(11): 513-530, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37493250

RESUMO

Interleukin-7 (IL-7) is a cytokine critical for the development and maintenance of group 2 innate lymphoid cells (ILC2s). ILC2s are resident in peripheral tissues such as the intestine and lung. However, whether IL-7 produced in the lung plays a role in the maintenance and function of lung ILC2s during airway inflammation remains unknown. IL-7 was expressed in bronchoalveolar epithelial cells and lymphatic endothelial cells (LECs). To investigate the role of local IL-7 in lung ILC2s, we generated two types of IL-7 conditional knockout (IL-7cKO) mice: Sftpc-Cre (SPC-Cre) IL-7cKO mice specific for bronchial epithelial cells and type 2 alveolar epithelial cells and Lyve1-Cre IL-7cKO mice specific for LECs. In steady state, ILC2s were located near airway epithelia, although lung ILC2s were unchanged in the two lines of IL-7cKO mice. In papain-induced airway inflammation dependent on innate immunity, lung ILC2s localized near bronchia via CCR4 expression, and eosinophil infiltration and type 2 cytokine production were reduced in SPC-Cre IL-7cKO mice. In contrast, in house dust mite (HDM)-induced airway inflammation dependent on adaptive immunity, lung ILC2s localized near lymphatic vessels via their CCR2 expression 2 weeks after the last challenge. Furthermore, lung ILC2s were decreased in Lyve1-Cre IL-7cKO mice in the HDM-induced inflammation because of decreased cell survival and proliferation. Finally, administration of anti-IL-7 antibody attenuated papain-induced inflammation by suppressing the activation of ILC2s. Thus, this study demonstrates that IL-7 produced by bronchoalveolar epithelial cells and LECs differentially controls the activation and maintenance of lung ILC2s, where they are localized in airway inflammation.


Assuntos
Imunidade Inata , Interleucina-7 , Camundongos , Animais , Células Endoteliais/metabolismo , Papaína , Linfócitos , Pulmão , Imunidade Adaptativa , Inflamação , Citocinas/metabolismo , Interleucina-33
3.
Allergy ; 78(7): 1878-1892, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37163231

RESUMO

INTRODUCTION: Epidemiological studies demonstrated that cleaning work and frequent use of cleaning products are risk factors for asthma. Laundry detergents have been reported to have epithelial barrier-opening effects. However, whether laundry detergents directly induce airway inflammation and its mechanisms in vivo remain to be elucidated. METHODS: Two commercial laundry detergents and two commonly used surfactants for cleaning and cosmetics (sodium lauryl sulfate and sodium dodecyl benzene sulfonate) were intranasally administered to mice. Lungs were analyzed using flow cytometry, histology, ELISA, and quantitative PCR. Human bronchial epithelial cells were stimulated with laundry detergents and analyzed using quantitative PCR and western blotting. Involvement of oxidative stress was assessed using an antioxidant. Dust samples from homes were analyzed to determine their detergent content by measuring their critical micelle concentration (CMC). RESULTS: The administered laundry detergents and surfactants-induced eosinophilic airway inflammation accompanied by increased IL-33 expression and activation of group 2 innate lymphoid cells (ILC2s). Detergent-induced eosinophilic airway inflammation was significantly attenuated in Rag2-/- Il2rg-/- , Il33-/- mice, and also in wild-type mice treated with NAC. Detergent-induced IL-33 expression in airways was attenuated by NAC treatment, both in vivo and in vitro. CMCs were found in all of the tested dust extracts, and they differed significantly among the homes. CONCLUSION: The laundry detergents and surfactants-induced eosinophilic airway inflammation in vivo through epithelial cell and ILC2 activation. They induced IL-33 expression in airway epithelial cells through oxidative stress. Furthermore, detergent residues were present in house dust and are presumably inhaled into the airway in daily life.


Assuntos
Detergentes , Imunidade Inata , Humanos , Camundongos , Animais , Detergentes/efeitos adversos , Tensoativos/efeitos adversos , Linfócitos , Interleucina-33/farmacologia , Poeira , Inflamação
4.
Biochem Biophys Res Commun ; 628: 57-63, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36081279

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by type 2 immune responses. Interleukin-25 (IL-25) is produced predominantly by epithelial cells. It can activate Th2 cells to produce type 2 cytokines such as IL-4, IL-5 and IL-13, contributing to host defense against nematodes. However, excessive/inappropriate production of IL-25 is considered to be involved in development of type 2 cytokine-associated allergic disorders such as asthma. On the other hand, the contribution of IL-25 to the pathogenesis of AD remains poorly understood. In the present study, we found that expression of Il25 mRNA was significantly increased in the skin of mice during oxazolone-induced chronic contact hypersensitivity (CHS), which is a mouse model of human AD. In addition, development of oxazolone-induced chronic CHS was significantly reduced in IL-25-deficient (Il25-/-) mice compared with wild-type mice on the C57BL/6, but not BALB/c, background, although IL-25 was not essential for IL-4 production by hapten-specific T cells. Therefore, IL-25 is crucial for development of chronic CHS, although that is partly dependent on the genetic background of the mice.


Assuntos
Dermatite Atópica , Dermatite de Contato , Interleucina-17 , Animais , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/genética , Dermatite de Contato/genética , Haptenos , Interleucina-13 , Interleucina-17/genética , Interleucina-4/genética , Interleucina-5 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oxazolona , RNA Mensageiro , Pele/metabolismo
5.
Front Immunol ; 13: 939378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844571

RESUMO

Group 2 innate lymphoid cells (ILC2s) are typically known for their ability to respond rapidly to parasitic infections and play a pivotal role in the development of certain allergic disorders. ILC2s produce cytokines such as Interleukin (IL)-5 and IL-13 similar to the type 2 T helper (Th2) cells. Recent findings have highlighted that ILC2s, together with IL-33 and eosinophils, participate in a considerably broad range of physiological roles such as anti-tumor immunity, metabolic regulation, and vascular disorders. Therefore, the focus of the ILC2 study has been extended from conventional Th2 responses to these unexplored areas of research. However, disease outcomes accompanied by ILC2 activities are paradoxical mostly in tumor immunity requiring further investigations. Although various environmental factors that direct the development, activation, and localization of ILC2s have been studied, IL-33/ILC2/eosinophil axis is presumably central in a multitude of inflammatory conditions and has guided the research in ILC2 biology. With a particular focus on this axis, we discuss ILC2s across different diseases.


Assuntos
Doenças Cardiovasculares , Neoplasias , Humanos , Imunidade Inata , Interleucina-33 , Linfócitos , Obesidade
6.
Biol Pharm Bull ; 45(3): 339-353, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35228400

RESUMO

Transforming growth factor (TGF)-ß1 and prostaglandin E2 (PGE2) are humoral factors critically involved in the induction of immunosuppression in the microenvironment of various types of tumors, including melanoma. In this study, we identified a natural compound that attenuated TGF-ß1- and PGE2-induced immunosuppression and examined its effect on B16 melanoma growth in mice. By screening 502 natural compounds for attenuating activity against TGF-ß1- or PGE2-induced suppression of cytolysis in poly(I:C)-stimulated murine splenocytes, we found that betulin was the most potent compound. Betulin also reduced TGF-ß1- and PGE2-induced downregulation of perforin and granzyme B mRNA expression and cell surface expression of NKG2D and CD69 in natural killer (NK) cells. Cell depletion and coculture experiments showed that NK cells, dendritic cells, B cells, and T cells were necessary for the attenuating effects of betulin. Structure-activity relationship analysis revealed that two hydroxyl groups at positions C3 and C28 of betulin, their cis-configuration, and methyl group at C30 played crucial roles in its attenuating activity. In a subcutaneous implantation model of B16 melanoma in mice, intratumor administration of betulin and LY2157299, a TGF-ß1 type I receptor kinase inhibitor, significantly retarded the growth of B16 melanoma. Notably, betulin increased significantly the number of CD69 positive NK cells in tumor sites at early stages of post-tumor cell injection. Our data suggest that betulin inhibits the growth of B16 melanoma by enhancing NK cell activity through attenuating the immunosuppressive tumor microenvironment.


Assuntos
Dinoprostona , Melanoma Experimental , Fator de Crescimento Transformador beta1 , Triterpenos , Animais , Dinoprostona/metabolismo , Células Matadoras Naturais , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Camundongos , Fator de Crescimento Transformador beta1/metabolismo , Triterpenos/farmacologia , Microambiente Tumoral
7.
Allergy ; 77(3): 843-855, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34402091

RESUMO

BACKGROUND: Platelets are thought to be involved in the pathophysiology of asthma, presumably through direct adhesion to inflammatory cells, including group 2 innate lymphoid cells (ILC2s). Here, we tried to elucidate the effects of platelet adhesion to ILC2s in vitro and in vivo, as well as the mechanisms involved. METHODS: Alternaria-induced ILC2-dependent airway inflammation models using wild-type and c-mpl-/- mice were evaluated. Both purified CD41+ and CD41- ILC2s were cultured with IL-2 and IL-33 to determine in vitro Type 2 (T2) cytokine production and cell proliferation. RNA-seq data of flow-cytometry-sorted CD41+ and CD41- ILC2s were used to isolate ILC2-specific genes. Flow cytometry was performed to determine the expression of CD41 and adhesion-related molecules on ILC2s in both mouse and human tissues. RESULTS: T2 inflammation and T2 cytokine production from ILC2s were significantly reduced in the c-mpl-/- mice compared to wild-type mice. Platelet-adherent ILC2s underwent significant proliferation and showed enhanced T2 cytokine production when exposed to IL-2 and IL-33. The functions of ILC2-specific genes were related to cell development and function. Upstream regulator analysis identified 15 molecules, that are thought to be involved in ILC2 activation. CD41 expression levels were higher in ILC2s from human PBMCs and mouse lung than in those from secondary lymphoid tissues, but they did not correlate with the P-selectin glycoprotein ligand-1 or CD24 expression level. CONCLUSION: Platelets spontaneously adhere to ILC2s, probably in the peripheral blood and airways, thereby potentiating ILC2s to enhance their responses to IL-33.


Assuntos
Imunidade Inata , Interleucina-33 , Animais , Citocinas/metabolismo , Humanos , Inflamação , Interleucina-2 , Interleucina-33/farmacologia , Pulmão/metabolismo , Linfócitos/metabolismo , Camundongos
8.
Sci Rep ; 11(1): 5913, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723298

RESUMO

Exposure to various antigens derived from house dust mites (HDM) is considered to be a risk factor for development of certain allergic diseases such as atopic asthma, atopic dermatitis, rhinitis and conjunctivitis. Chitin is an insoluble polysaccharide (ß-(1-4)-poly-N-acetyl-D-glucosamine) and a major component in the outer shell of HDMs. Mice exposed to chitin develop asthma-like airway eosinophilia. On the other hand, several lines of evidence show that the effects of chitin on immune responses are highly dependent on the size of chitin particles. In the present study, we show that chitin induced production of IL-33 and TSLP by alveolar and bronchial epithelial cells, respectively, in mice. IL-25, IL-33 and TSLP were reported to be important for group 2 innate lymphoid cell (ILC2)-, but not Th2 cell-, dependent airway eosinophilia in a certain model using chitin beads. Here, we show that-in our murine models-epithelial cell-derived IL-33 and TSLP, but not IL-25, were crucial for activation of resident lung Th2 cells as well as group 2 innate lymphoid cells (ILC2s) to produce IL-5, resulting in development of chitin-induced airway eosinophilia. Our findings provide further insight into the underlying mechanisms of development of HDM-mediated allergic disorders.


Assuntos
Asma/etiologia , Asma/metabolismo , Citocinas/metabolismo , Eosinofilia/etiologia , Eosinofilia/metabolismo , Interleucina-17/metabolismo , Interleucina-33/metabolismo , Animais , Asma/patologia , Biomarcadores , Quitina/efeitos adversos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Eosinofilia/patologia , Imunidade Inata , Mediadores da Inflamação/metabolismo , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Camundongos , Camundongos Knockout , Linfopoietina do Estroma do Timo
9.
Biochem Biophys Res Commun ; 533(3): 493-500, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32977946

RESUMO

Silica crystals (silica), which are a major mineral component of volcanic ash and desert dust, contribute to the pathogenesis of pulmonary disorders such as asthma and fibrosis. Although administration of silica or sand dust to rodents exacerbates development of ovalbumin-induced or house dust mite-induced asthma-like airway inflammation, the detailed mechanisms remain unclear. Here, using murine models, we found that silica can induce IL-33 expression in pulmonary epithelial cells. IL-33, but not IL-25 or TSLP, and type 2 cytokines such as IL-5 and IL-13 were critically involved in silica's exacerbation of OVA-induced airway eosinophilia in mice. Innate lymphoid cells (ILCs), but not T, B or NKT cells, were also involved in the setting. Moreover, a scavenger receptor that recognized silica was important for silica's exacerbating effect. These observations suggest that IL-33 induced in epithelial cells by silica activates ILCs to produce IL-5 and/or IL-13, contributing to silica's exacerbation of OVA-induced airway eosinophilia in mice. Our findings provide new insight into the underlying mechanisms of exacerbation of pulmonary disorders such as asthma following inhalation of silica-containing materials such as volcanic ash and desert dust.


Assuntos
Interleucina-33/fisiologia , Eosinofilia Pulmonar/imunologia , Dióxido de Silício/toxicidade , Animais , Asma/imunologia , Citocinas/fisiologia , Interleucina-13/fisiologia , Interleucina-33/biossíntese , Interleucina-5/fisiologia , Interleucinas/fisiologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Pneumonia/imunologia , Pneumonia/patologia , Eosinofilia Pulmonar/induzido quimicamente , Receptores Depuradores/fisiologia , Linfopoietina do Estroma do Timo
10.
Sci Adv ; 5(7): eaav8152, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31328158

RESUMO

The function of regulatory immune cells in peripheral tissues is crucial to the onset and severity of various diseases. Interleukin-10 (IL-10)-producing regulatory B (IL-10+ Breg) cells are known to suppress various inflammatory diseases. However, evidence for the mechanism by which IL-10+ Breg cells are generated and maintained is still very limited. Here, we found that IL-10+ Breg cells suppress the activation of IL-13-producing type 2 innate lymphoid cells (IL-13+ ILC2s) in an IL-10-dependent manner in mice with oxazolone-induced severe contact hypersensitivity (CHS). Mast cell (MC) IL-5 was important for maintaining the population of IL-10+ Breg cells in peripheral lymphoid tissues. Overall, these results uncover a previously unknown mechanism of MCs as a type of immunoregulatory cell and elucidate the cross-talk among MCs, IL-10+ Breg cells, and IL-13+ ILC2s in CHS.


Assuntos
Linfócitos B Reguladores/imunologia , Linfócitos B Reguladores/metabolismo , Dermatite de Contato/etiologia , Dermatite de Contato/metabolismo , Interleucina-5/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Oxazolona/efeitos adversos , Tolerância Periférica , Animais , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Citocinas/metabolismo , Dermatite de Contato/patologia , Modelos Animais de Doenças , Imunofluorescência , Isotipos de Imunoglobulinas/imunologia , Masculino , Camundongos , Camundongos Knockout
11.
Immunobiology ; 223(6-7): 486-492, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29269115

RESUMO

Interleukin (IL)-5 is a critical regulator of eosinophils and a therapeutic target for asthma. The administration of anti-IL-5 or anti-IL-5 receptor (IL-5R) antibodies has been shown to reduce eosinophil counts and ameliorate asthmatic symptoms in studies on animal models of allergy as well as in human clinical trials. In order to explore other potential clinical uses of IL-5R antibodies, we used an animal model of IL-33-mediated pulmonary arterial hypertrophy. We first generated chimeric monoclonal antibodies against the mouse IL-5 receptor α chain (IL-5Rα), which comprised an Fc region from human IgG1 and a Fab region from a previously established anti-mouse IL-5Rα monoclonal antibody. To investigate the role of antibody-dependent cell-mediated cytotoxicity (ADCC), chimeric antibodies that lacked ADCC were prepared. These antibodies recognized IL-5Rα to the same extent as the ADCC-sufficient antibodies. Administration of chimeric antibodies with ADCC resulted in the elimination of eosinophils from the lung and thus suppressed the development of arterial hypertrophy. This effect was attenuated in mice treated with antibodies lacking ADCC. Taken together, the results of this study provided a potential use for anti-IL-5Rα antibodies in the treatment of arterial hypertrophy, which leads to pulmonary hypertension.


Assuntos
Anticorpos Monoclonais/metabolismo , Eosinófilos/imunologia , Hipersensibilidade/imunologia , Imunoterapia/métodos , Artéria Pulmonar/patologia , Receptores de Interleucina-5/imunologia , Animais , Anticorpos Monoclonais/genética , Citotoxicidade Celular Dependente de Anticorpos , Células Cultivadas , Modelos Animais de Doenças , Humanos , Hipersensibilidade/terapia , Hipertrofia , Interleucina-33/metabolismo , Interleucina-5/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão/genética
12.
Cell Immunol ; 323: 33-40, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29108648

RESUMO

Cyclosporin A (CsA) is a well-known immunosuppressant that is used against steroid-resistant asthma. Group 2 innate lymphoid cells (ILC2s) and type 2 helper T (Th2) cells produce Th2 cytokines including IL-5 and play important roles in asthma pathogenesis. Here, we studied the effects of CsA in allergen-induced lung inflammation in mice and found that CsA decreased the number of lung ILC2s and attenuated papain-induced activation of ILC2s accompanied with IL-5 expression. The ILC2 suppression mediated by CsA was not observed in culture or in lymphocyte-deficient Rag2-/- mice. Thus, we propose a new suppressive effect of CsA, i.e., administration of CsA indirectly suppresses maintenance and activation of lung ILC2s in addition to direct suppression of T-cell activation and cytokine production.


Assuntos
Ciclosporina/farmacologia , Linfócitos/efeitos dos fármacos , Pneumonia/tratamento farmacológico , Alérgenos , Animais , Asma/imunologia , Asma/metabolismo , Ciclosporina/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Imunidade Inata/imunologia , Pulmão/imunologia , Ativação Linfocitária , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Papaína/farmacologia , Pneumonia/metabolismo , Células Th2/efeitos dos fármacos , Células Th2/imunologia
13.
Nat Commun ; 8(1): 286, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28819169

RESUMO

Adipose tissue resident macrophages have important roles in the maintenance of tissue homeostasis and regulate insulin sensitivity for example by secreting pro-inflammatory or anti-inflammatory cytokines. Here, we show that M2-like macrophages in adipose tissue regulate systemic glucose homeostasis by inhibiting adipocyte progenitor proliferation via the CD206/TGFß signaling pathway. We show that adipose tissue CD206+ cells are primarily M2-like macrophages, and ablation of CD206+ M2-like macrophages improves systemic insulin sensitivity, which was associated with an increased number of smaller adipocytes. Mice genetically engineered to have reduced numbers of CD206+ M2-like macrophages show a down-regulation of TGFß signaling in adipose tissue, together with up-regulated proliferation and differentiation of adipocyte progenitors. Our findings indicate that CD206+ M2-like macrophages in adipose tissues create a microenvironment that inhibits growth and differentiation of adipocyte progenitors and, thereby, control adiposity and systemic insulin sensitivity.Adipose tissue contains macrophages that can influence both local and systemic metabolism via the secretion of cytokines. Here, Nawaz et al. report that M2-like macrophages, present in adipose tissue, create a microenvironment that inhibits proliferation of adipocyte progenitors due to the secretion of TGF-ß1.


Assuntos
Adipócitos/citologia , Glucose/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Lectinas de Ligação a Manose/metabolismo , Obesidade/metabolismo , Receptores de Superfície Celular/metabolismo , Adipócitos/metabolismo , Adipócitos Brancos/metabolismo , Adipócitos Brancos/patologia , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Lectinas Tipo C/genética , Receptor de Manose , Lectinas de Ligação a Manose/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Superfície Celular/genética , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Fator de Crescimento Transformador beta/metabolismo
14.
Sci Rep ; 7(1): 3855, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28634350

RESUMO

Pericytes are believed to originate from either mesenchymal or neural crest cells. It has recently been reported that pericytes play important roles in the central nervous system (CNS) by regulating blood-brain barrier homeostasis and blood flow at the capillary level. However, the origin of CNS microvascular pericytes and the mechanism of their recruitment remain unknown. Here, we show a new source of cerebrovascular pericytes during neurogenesis. In the CNS of embryonic day 10.5 mouse embryos, CD31+F4/80+ hematopoietic lineage cells were observed in the avascular region around the dorsal midline of the developing midbrain. These cells expressed additional macrophage markers such as CD206 and CD11b. Moreover, the CD31+F4/80+ cells phagocytosed apoptotic cells as functionally matured macrophages, adhered to the newly formed subventricular vascular plexus, and then divided into daughter cells. Eventually, these CD31+F4/80+ cells transdifferentiated into NG2/PDGFRß/desmin-expressing cerebrovascular pericytes, enwrapping and associating with vascular endothelial cells. These data indicate that a subset of cerebrovascular pericytes derive from mature macrophages in the very early phase of CNS vascular development, which in turn are recruited from sites of embryonic hematopoiesis such as the yolk sac by way of blood flow.


Assuntos
Sistema Nervoso Central/irrigação sanguínea , Macrófagos/citologia , Macrófagos/metabolismo , Pericitos/citologia , Pericitos/metabolismo , Animais , Biomarcadores , Capilares/embriologia , Rastreamento de Células , Transdiferenciação Celular , Camundongos , Camundongos Knockout , Fenótipo
15.
JCI Insight ; 2(7): e90721, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28405615

RESUMO

IL-33 is one of the critical cytokines that activates group 2 innate lymphoid cells (ILC2s) and mediates allergic reactions. Accumulating evidence suggests that IL-33 is also involved in the pathogenesis of several chronic inflammatory diseases. Previously, we generated an IL-5 reporter mouse and revealed that lung IL-5-producing ILC2s played essential roles in regulating eosinophil biology. In this study, we evaluated the consequences of IL-33 administration over a long period, and we observed significant expansion of ILC2s and eosinophils surrounding pulmonary arteries. Unexpectedly, pulmonary arteries showed severe occlusive hypertrophy that was ameliorated in IL-5- or eosinophil-deficient mice, but not in Rag2-deficient mice. This indicates that IL-5-producing ILC2s and eosinophils play pivotal roles in pulmonary arterial hypertrophy. Administration of a clinically used vasodilator was effective in reducing IL-33-induced hypertrophy and repressed the expansion of ILC2s and eosinophils. Taken together, these observations demonstrate a previously unrecognized mechanism in the development of pulmonary arterial hypertrophy and the causative roles of ILC2 in the process.


Assuntos
Proteínas de Ligação a DNA/genética , Eosinófilos/imunologia , Interleucina-33/farmacologia , Interleucina-5/imunologia , Artéria Pulmonar/patologia , Células Th2/imunologia , Animais , Hipertrofia , Imunidade Inata , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
16.
Diabetes ; 65(12): 3649-3659, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27625023

RESUMO

Adipose tissue hypoxia is an important feature of pathological adipose tissue expansion. Hypoxia-inducible factor-1α (HIF-1α) in adipocytes reportedly induces oxidative stress and fibrosis, rather than neoangiogenesis via vascular endothelial growth factor (VEGF)-A. We previously reported that macrophages in crown-like structures (CLSs) are both hypoxic and inflammatory. In the current study, we examined how macrophage HIF-1α is involved in high-fat diet (HFD)-induced inflammation, neovascularization, hypoxia, and insulin resistance using mice with myeloid cell-specific HIF-1α deletion that were fed an HFD. Myeloid cell-specific HIF-1α gene deletion protected against HFD-induced inflammation, CLS formation, poor vasculature development in the adipose tissue, and systemic insulin resistance. Despite a reduced expression of Vegfa in epididymal white adipose tissue (eWAT), the preadipocytes and endothelial cells of HIF-1α-deficient mice expressed higher levels of angiogenic factors, including Vegfa, Angpt1, Fgf1, and Fgf10 in accordance with preferable eWAT remodeling. Our in vitro study revealed that lipopolysaccharide-treated bone marrow-derived macrophages directly inhibited the expression of angiogenic factors in 3T3-L1 preadipocytes. Thus, macrophage HIF-1α is involved not only in the formation of CLSs, further enhancing the inflammatory responses, but also in the inhibition of neoangiogenesis in preadipocytes. We concluded that these two pathways contribute to the obesity-related physiology of pathological adipose tissue expansion, thus causing systemic insulin resistance.


Assuntos
Tecido Adiposo/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Resistência à Insulina/genética , Células Mieloides/metabolismo , Células 3T3-L1 , Angiopoietina-1/metabolismo , Animais , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Feminino , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 10 de Crescimento de Fibroblastos/metabolismo , Teste de Tolerância a Glucose , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inflamação/etiologia , Inflamação/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/etiologia , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Diabetol Int ; 7(1): 59-68, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30603244

RESUMO

Chronic inflammation is a pathophysiology of insulin resistance in metabolic diseases, such as obesity and type 2 diabetes. Adipose tissue macrophages (ATMs) play important roles in this inflammatory process. SIRT1 is implicated in the regulation of glucose metabolism in some metabolic tissues, such as liver or skeletal muscle. This study was performed to investigate whether SIRT1 in macrophages played any roles in the regulation of inflammation and glucose metabolism. Myeloid cell-specific SIRT1-knockout mice were originally generated and analyzed under chow-fed and high-fat-fed conditions. Myeloid cell-specific SIRT1 deletion impaired insulin sensitivity and glucose tolerance assessed by the glucose- or insulin-tolerance test, which was associated with the enhanced expression of inflammation-related genes in epididymal adipose tissue of high-fat-fed mice. Interestingly, the M1 ATMs from the SIRT1-knockout mice showed more hypoxic and inflammatory phenotypes than those from control mice. The expressions of some inflammatory genes, such as Il1b and Nos2, which were induced by in vitro hypoxia treatment, were further enhanced by SIRT1 deletion along with the increased acetylation of HIF-1α in cultured macrophages. These results suggest that deletion of SIRT1 in myeloid cells impairs glucose metabolism by enhancing the hypoxia and inflammatory responses in ATMs, thereby possibly representing a novel therapeutic target for metabolic diseases, such as type 2 diabetes.

18.
Immunology ; 147(1): 21-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26425820

RESUMO

Group 2 innate lymphoid cells (ILC2s) produce a significant amount of interleukin-5 (IL-5), which supports eosinophil responses in various tissues; they also produce IL-13, which induces mucus production and contributes to tissue repair or fibrosis. The ILC2s are activated by alarmins, such as IL-33 released from epithelia, macrophages and natural killer T (NKT) cells in response to infection and allergen exposure, leading to epithelial injury. We examined gene expression in lung ILC2s and found that ILC2s expressed Ifngr1, the receptor for interferon-γ (IFN-γ). Interferon-γ severely inhibited IL-5 and IL-13 production by lung and kidney ILC2s. To evaluate the effects in vivo, we used α-galactosylceramide (α-GalCer) to induce NKT cells to produce IL-33 and IFN-γ. Intraperitoneal injection of α-GalCer in mice induced NKT cell activation resulting in IL-5 and IL-13 production by ILC2s. Administration of anti-IFN-γ together with α-GalCer significantly enhanced the production of IL-5 and IL-13 by ILC2s in lung and kidney. Conversely, cytokine production from ILC2s was markedly suppressed after injection of exogenous IL-33 in Il33(-/-) mice pre-treated with α-GalCer. Hence, IFN-γ induced or already present in tissues can impact downstream pleiotropic functions mediated by ILC2s, such as inflammation and tissue repair.


Assuntos
Imunidade Inata/efeitos dos fármacos , Interferon gama/metabolismo , Rim/metabolismo , Pulmão/metabolismo , Linfócitos/metabolismo , Animais , Células Cultivadas , Galactosilceramidas/farmacologia , Interferon gama/imunologia , Interferon gama/farmacologia , Interleucina-13/imunologia , Interleucina-13/metabolismo , Interleucina-33/deficiência , Interleucina-33/genética , Interleucina-5/genética , Interleucina-5/imunologia , Interleucina-5/metabolismo , Rim/citologia , Rim/efeitos dos fármacos , Rim/imunologia , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Ativação Linfocitária , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Fenótipo , Receptores de Interferon/agonistas , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Receptor de Interferon gama
19.
Sci Rep ; 5: 8505, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25687367

RESUMO

Emerging lines of evidence have shown that extracellular vesicles (EVs) mediate cell-to-cell communication by exporting encapsulated materials, such as microRNAs (miRNAs), to target cells. Endothelial cell-derived EVs (E-EVs) are upregulated in circulating blood in different pathological conditions; however, the characteristics and the role of these E-EVs are not yet well understood. In vitro studies were conducted to determine the role of inflammation-induced E-EVs in the cell-to-cell communication between vascular endothelial cells and pericytes/vSMCs. Stimulation with inflammatory cytokines and endotoxin immediately induced release of shedding type E-EVs from the vascular endothelial cells, and flow cytometry showed that the induction was dose dependent. MiRNA array analyses revealed that group of miRNAs were specifically increased in the inflammation-induced E-EVs. E-EVs added to the culture media of cerebrovascular pericytes were incorporated into the cells. The E-EV-supplemented cells showed highly induced mRNA and protein expression of VEGF-B, which was assumed to be a downstream target of the miRNA that was increased within the E-EVs after inflammatory stimulation. The results suggest that E-EVs mediate inflammation-induced endothelial cell-pericyte/vSMC communication, and the miRNAs encapsulated within the E-EVs may play a role in regulating target cell function. E-EVs may be new therapeutic targets for the treatment of inflammatory diseases.


Assuntos
Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Inflamação/metabolismo , Pericitos/metabolismo , Animais , Comunicação Celular , Perfilação da Expressão Gênica , Inflamação/genética , Camundongos , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Immunol Lett ; 163(1): 22-31, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25448706

RESUMO

LPS stimulates the TLR4/Myeloid differentiation protein-2 (MD-2) complex and promotes a variety of immune responses in B cells. TLR4 has two main signaling pathways, MyD88 and Toll/IL-1R (TIR)-domain-containing adaptor-inducing interferon-ß (TRIF) pathways, but relatively few studies have examined these pathways in B cells. In this study, we investigated MyD88- or TRIF-dependent LPS responses in B cells by utilizing their knockout mice. Compared with wild-type (WT) B cells, MyD88(-/-) B cells were markedly impaired in up-regulation of CD86 and proliferation induced by lipid A moiety of LPS. TRIF(-/-) B cells were also impaired in these responses compared with WT B cells, but showed better responses than MyD88(-/-) B cells. Regarding class switch recombination (CSR) elicited by lipid A plus IL-4, MyD88(-/-) B cells showed similar patterns of CSR to WT B cells. However, TRIF(-/-) B cells showed the impaired in the CSR. Compared with WT and MyD88(-/-) B cells, TRIF(-/-) B cells exhibited reduced cell division, fewer IgG1(+) cells per division, and decreased activation-induced cytidine deaminase (Aicda) mRNA expression in response to lipid A plus IL-4. Finally, IgG1 production to trinitrophenyl (TNP)-LPS immunization was impaired in TRIF(-/-) mice, while MyD88(-/-) mice exhibited increased IgG1 production. Thus, MyD88 and TRIF pathways differently regulate TLR4-induced immune responses in B cells.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/imunologia , Formação de Anticorpos , Linfócitos B/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Linfócitos B/citologia , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Transdução de Sinais/genética , Receptor 4 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...