Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Stomatologiia (Mosk) ; 99(5): 87-91, 2020.
Artigo em Russo | MEDLINE | ID: mdl-33034183

RESUMO

The paper presents a clinical case demonstrating the necessity for scarce dental implants surgery in tissues affected by multiply surgical and radiological procedures. The patient underwent 13 interventions, 4 reconstructive procedures and 3 courses of radiotherapy resulting in extensive facial defect. An orthopedic construction was fixed in a defect on mechanically stable single-stage implants with screw-retained orthopedic platform and trans-zygomatic implants on the contralateral side. The method is based on virtual diagnostics and choice of materials for 3D-prototyping of a framework to fill the defect and serve as supportive element for fixation and stabilization of obturator and facial mask.


Assuntos
Implantes Dentários , Procedimentos de Cirurgia Plástica , Prótese Dentária Fixada por Implante , Humanos
3.
Nat Commun ; 9(1): 150, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323136

RESUMO

Quantum theory is expected to govern the electromagnetic properties of a quantum metamaterial, an artificially fabricated medium composed of many quantum objects acting as artificial atoms. Propagation of electromagnetic waves through such a medium is accompanied by excitations of intrinsic quantum transitions within individual meta-atoms and modes corresponding to the interactions between them. Here we demonstrate an experiment in which an array of double-loop type superconducting flux qubits is embedded into a microwave transmission line. We observe that in a broad frequency range the transmission coefficient through the metamaterial periodically depends on externally applied magnetic field. Field-controlled switching of the ground state of the meta-atoms induces a large suppression of the transmission. Moreover, the excitation of meta-atoms in the array leads to a large resonant enhancement of the transmission. We anticipate possible applications of the observed frequency-tunable transparency in superconducting quantum networks.

4.
Quantum Inf Process ; 15(12): 5385-5414, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28408863

RESUMO

We present a design for the experimental integration of ion trapping and superconducting qubit systems as a step towards the realization of a quantum hybrid system. The scheme addresses two key difficulties in realizing such a system: a combined microfabricated ion trap and superconducting qubit architecture, and the experimental infrastructure to facilitate both technologies. Developing upon work by Kielpinski et al. (Phys Rev Lett 108(13):130504, 2012. doi:10.1103/PhysRevLett.108.130504), we describe the design, simulation and fabrication process for a microfabricated ion trap capable of coupling an ion to a superconducting microwave LC circuit with a coupling strength in the tens of kHz. We also describe existing difficulties in combining the experimental infrastructure of an ion trapping set-up into a dilution refrigerator with superconducting qubits and present solutions that can be immediately implemented using current technology.

5.
Rev Sci Instrum ; 85(10): 104702, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25362429

RESUMO

We present a practical design and implementation of a broadband sample holder suitable for microwave experiments with superconducting integrated circuits at millikelvin temperatures. Proposed design can be easily integrated in standard dilution cryostats, has flat pass band response in a frequency range from 0 to 32 GHz, allowing the RF testing of the samples with substrate size up to 4 × 4 mm(2). The parasitic higher modes interference in the holder structure is analyzed and prevented via design considerations. The developed setup can be used for characterization of superconducting parametric amplifiers, bolometers, and qubits. We tested the designed sample holder by characterizing of a superconducting flux qubit at 20 mK temperature.

6.
Rev Sci Instrum ; 85(5): 054702, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24880390

RESUMO

A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.

7.
Sci Rep ; 3: 3464, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24322568

RESUMO

We propose a method of resolving a spatially coherent signal, which contains on average just a single photon, against the background of local noise at the same frequency. The method is based on detecting the signal simultaneously in several points more than a wavelength apart through the entangling interaction of the incoming photon with the quantum metamaterial sensor array. The interaction produces the spatially correlated quantum state of the sensor array, characterised by a collective observable (e.g., total magnetic moment), which is read out using a quantum nondemolition measurement. We show that the effects of local noise (e.g., fluctuations affecting the elements of the array) are suppressed relative to the signal from the spatially coherent field of the incoming photon as , where N is the number of array elements. The realisation of this approach in the microwave range would be especially useful and is within the reach of current experimental techniques.

8.
Artigo em Inglês | MEDLINE | ID: mdl-23848617

RESUMO

The effect of complex dynamics of solitons on the output noise of the system (thermal jitter) is studied in the frame of the driven underdamped Frenkel-Kontorova model. In contrast to the continuous case, we have observed a dramatic splash of the jitter. It is demonstrated that this jitter increase is related to the joining of an initial soliton with the one generated by large amplitude oscillations of the Cherenkov radiation tail, which results in the establishment of a unified soliton structure.

9.
Rev Sci Instrum ; 84(5): 054707, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23742575

RESUMO

An ultra-wide stopband hairpin bandpass filter with integrated nonuniform transmission lines was designed and fabricated for highly sensitive measurements at cryogenic temperatures down to millikelvin and a frequency range of 10 Hz-10 GHz. The scattering matrices of the filter were characterized at T = 4.2 K. The filter provides a stopband from 10 Hz to 2.2 GHz and from 2.3 GHz to 10 GHz with more than 50 dB and 40 dB of amplitude suppression, respectively. The center frequency of the passband is f0 = 2.25 GHz with a bandwidth Δf = 80 MHz. The maximum insertion loss in the passband is 4 dB. The filter has a 50 Ω input and output impedance, SubMiniature version A connector termination, and significantly reduced form factor. The wide stopband frequency range and narrow passband in conjunction with small dimensions make the filter suitable to use it as a part of a high sensitive readout for superconducting quantum circuits, such as superconducting quantum bits and cryogenic parametric amplifiers.

10.
Phys Rev Lett ; 110(5): 053602, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23414019

RESUMO

We demonstrate amplification of a microwave signal by a strongly driven two-level system in a coplanar waveguide resonator. The effect, similar to the dressed-state lasing known from quantum optics, is observed with a single quantum system formed by a persistent current (flux) qubit. The transmission through the resonator is enhanced when the Rabi frequency of the driven qubit is tuned into resonance with one of the resonator modes. Amplification as well as linewidth narrowing of a weak probe signal has been observed. The stimulated emission in the resonator has been studied by measuring the emission spectrum. We analyzed our system and found an excellent agreement between the experimental results and the theoretical predictions obtained in the dressed-state model.

11.
Rev Sci Instrum ; 82(10): 104705, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22047315

RESUMO

An ultra-low-noise one-stage SiGe heterojunction bipolar transistor amplifier was designed for cryogenic temperatures and a frequency range of 10 kHz-100 MHz. A noise temperature T(N) ≈ 1.4 K was measured at an ambient temperature of 4.2 K at frequencies between 100 kHz and 100 MHz for a source resistance of ~50 Ω. The voltage gain of the amplifier was 25 dB at a power consumption of 720 µW. The input voltage noise spectral density of the amplifier is about 35 pV/√Hz. The low noise resistance and power consumption makes the amplifier suitable for readout of resistively shunted DC SQUID magnetometers and amplifiers.

12.
Phys Rev Lett ; 101(25): 253602, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-19113707

RESUMO

Superconducting oscillators have been successfully used for quantum control and readout devices in conjunction with superconducting qubits. Also, squeezed states can improve the accuracy of measurements to subquantum, or at least subthermal, levels. Here, we show theoretically how to produce squeezed states of microwave radiation in a superconducting oscillator with tunable parameters. Its resonance frequency can be changed by controlling an rf SQUID inductively coupled to the oscillator. By repeatedly shifting the resonance frequency between any two values, it is possible to produce squeezed and subthermal states of the electromagnetic field in the (0.1-10) GHz range, even when the relative frequency change is small. We propose experimental protocols for the verification of squeezed state generation, and for their use to improve the readout fidelity when such oscillators serve as quantum transducers.

13.
Phys Rev Lett ; 101(1): 017003, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18764145

RESUMO

We compare the results of ground state and spectroscopic measurements carried out on superconducting flux qubits which are effective two-level quantum systems. For a single qubit and for two coupled qubits we show excellent agreement between the parameters of the pseudospin Hamiltonian found using both methods. We argue that by making use of the ground state measurements the Hamiltonian of N coupled flux qubits can be reconstructed as well at temperatures smaller than the energy level separation. Such a reconstruction of a many-qubit Hamiltonian can be useful for future quantum information processing devices.

14.
Phys Rev Lett ; 98(5): 057004, 2007 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-17358887

RESUMO

We have realized controllable coupling between two three-junction flux qubits by inserting an additional coupler loop between them, containing three Josephson junctions. Two of these are shared with the qubit loops, providing strong qubit-coupler interaction. The third junction gives the coupler a nontrivial current-flux relation; its derivative (i.e., the susceptibility) determines the coupling strength J, which thus is tunable in situ via the coupler's flux bias. In the qubit regime, J was varied from approximately 45 (antiferromagnetic) to approximately -55 mK (ferromagnetic); in particular, J vanishes for an intermediate coupler bias. Measurements on a second sample illuminate the relation between two-qubit tunable coupling and three-qubit behavior.

15.
Phys Rev Lett ; 96(4): 047006, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16486877

RESUMO

We present the first experimental results on a device with more than two superconducting qubits. The circuit consists of four three-junction flux qubits, with simultaneous ferro- and antiferromagnetic coupling implemented using shared Josephson junctions. Its response, which is dominated by the ground state, is characterized using low-frequency impedance measurement with a superconducting tank circuit coupled to the qubits. The results are found to be in excellent agreement with the quantum-mechanical predictions.

16.
Phys Rev Lett ; 93(3): 037003, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15323858

RESUMO

We have studied the low-frequency magnetic susceptibility of two inductively coupled flux qubits using the impedance measurement technique (IMT), through their influence on the resonant properties of a weakly coupled high-quality tank circuit. In a single qubit, an IMT dip in the tank's current-voltage phase angle at the level anticrossing yields the amplitude of coherent flux tunneling. For two qubits, the difference (IMT deficit) between the sum of single-qubit dips and the dip amplitude when both qubits are at degeneracy shows that the system is in a mixture of entangled states (a necessary condition for entanglement). The dependence on temperature and relative bias between the qubits allows one to determine all the parameters of the effective Hamiltonian and equilibrium density matrix, and confirms the formation of entangled eigenstates.

17.
Phys Rev Lett ; 91(9): 097906, 2003 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-14525214

RESUMO

Under resonant irradiation, a quantum system can undergo coherent (Rabi) oscillations in time. We report evidence for such oscillations in a continuously observed three-Josephson-junction flux qubit, coupled to a high-quality tank circuit tuned to the Rabi frequency. In addition to simplicity, this method of Rabi spectroscopy enabled a long coherence time of about 2.5 micros, corresponding to an effective qubit quality factor approximately 7000.

18.
Phys Rev Lett ; 86(23): 5369-72, 2001 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-11384500

RESUMO

We have measured the current-phase relationship I(varphi) of symmetric 45 degrees YBa2Cu3O7-x grain boundary Josephson junctions. Substantial deviations of the Josephson current from conventional tunnel-junction behavior have been observed: (i) The critical current exhibits, as a function of temperature T, a local minimum at a temperature T*. (ii) At T approximately T*, the first harmonic of I(phi) changes sign. (iii) For T

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...