Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 598(7881): 444-450, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34671136

RESUMO

In perovskite solar cells, the interfaces between the perovskite and charge-transporting layers contain high concentrations of defects (about 100 times that within the perovskite layer), specifically, deep-level defects, which substantially reduce the power conversion efficiency of the devices1-3. Recent efforts to reduce these interfacial defects have focused mainly on surface passivation4-6. However, passivating the perovskite surface that interfaces with the electron-transporting layer is difficult, because the surface-treatment agents on the electron-transporting layer may dissolve while coating the perovskite thin film. Alternatively, interfacial defects may not be a concern if a coherent interface could be formed between the electron-transporting and perovskite layers. Here we report the formation of an interlayer between a SnO2 electron-transporting layer and a halide perovskite light-absorbing layer, achieved by coupling Cl-bonded SnO2 with a Cl-containing perovskite precursor. This interlayer has atomically coherent features, which enhance charge extraction and transport from the perovskite layer, and fewer interfacial defects. The existence of such a coherent interlayer allowed us to fabricate perovskite solar cells with a power conversion efficiency of 25.8 per cent (certified 25.5 per cent)under standard illumination. Furthermore, unencapsulated devices maintained about 90 per cent of their initial efficiency even after continuous light exposure for 500 hours. Our findings provide guidelines for designing defect-minimizing interfaces between metal halide perovskites and electron-transporting layers.

2.
Nat Commun ; 12(1): 4309, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262036

RESUMO

To boost the photoelectrochemical water oxidation performance of hematite photoanodes, high temperature annealing has been widely applied to enhance crystallinity, to improve the interface between the hematite-substrate interface, and to introduce tin-dopants from the substrate. However, when using additional dopants, the interaction between the unintentional tin and intentional dopant is poorly understood. Here, using germanium, we investigate how tin diffusion affects overall photoelectrochemical performance in germanium:tin co-doped systems. After revealing that germanium is a better dopant than tin, we develop a facile germanium-doping method which suppresses tin diffusion from the fluorine doped tin oxide substrate, significantly improving hematite performance. The NiFeOx@Ge-PH photoanode shows a photocurrent density of 4.6 mA cm-2 at 1.23 VRHE with a low turn-on voltage. After combining with a perovskite solar cell, our tandem system achieves 4.8% solar-to-hydrogen conversion efficiency (3.9 mA cm-2 in NiFeOx@Ge-PH/perovskite solar water splitting system). Our work provides important insights on a promising diagnostic tool for future co-doping system design.

3.
Phys Chem Chem Phys ; 18(39): 27024-27025, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27711750
4.
ChemSusChem ; 9(18): 2592-2596, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27611720

RESUMO

Although perovskite solar cells (PSCs) surpassing 20 % in certified power conversion efficiency (PCE) have been demonstrated with organic hole-transporting layers (HTLs), thermal degradation remains one of the key issues for practical applications. We fabricated PSCs using low temperature solution-processed CuSCN as the inorganic hole-transport layer (HTL), which possesses a highly stable crystalline structure and is robust even at high temperatures. The best-performing cell delivers a PCE of 18.0 %, with 15.9 % measured at the stabilized power output. Here we report the thermal stability of PSCs based on CuSCN in comparison with commonly used 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD). The PSC fabricated with organic spiro-OMeTAD degrades to 25 % of initial PCE after annealing for 2 h at 125 °C in air under 40 % average relative humidity. However, CuSCN-based PSCs maintain approximately 60 % of the initial value, exhibiting superior thermal stability under identical conditions. This work demonstrates that high efficiency and improved thermal stability are simultaneously achieved when CuSCN is used as an HTL in PSCs.


Assuntos
Compostos de Cálcio/química , Fontes de Energia Elétrica , Óxidos/química , Energia Solar , Temperatura , Tiocianatos/química , Titânio/química , Estabilidade de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...