Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38397996

RESUMO

The survival rate of pediatric acute myeloid leukemia (pAML) is currently around 60%. While survival has slowly increased over the past few decades, the development of novel agents likely to further improve survival for this heterogeneous patient population has been limited by gaps in the pAML pre-clinical pipeline. One of the major hurdles in evaluating new agents for pAML is the lack of pAML patient-derived xenograft (PDX) models. Unlike solid tumors and other types of leukemias, AML is notoriously hard to establish in mouse models, likely due in part to the need for specific human microenvironment elements. Our laboratory at TCH/BCM addressed this gap by establishing a systematic PDX workflow, leveraging advanced immunodeficient hosts and capitalizing on our high volume of pAML patients and close coordination between labs and clinical sections. Patients treated at TCH are offered the chance to participate in specimen banking protocols that allow blood and bone marrow collection as well as the collection of relevant clinical data. All patients who consent and have samples available are trialed for PDX development. In addition, samples from the Children's Oncology Group (COG) are also trialed for PDX generation. Serially transplanting PDX models are validated using short tandem repeat (STR) and characterized using both targeted DNA/RNA next generation sequencing and RNAseq. As of March 2023, this systematic approach has resulted in 26 serially transplanting models. Models have been shared with requesting labs to facilitate external pAML pre-clinical studies. Available PDX models can be located through the BCM PDX Portal. We expect our growing PDX resource to make a significant contribution to expediting the testing of promising novel therapeutics for pAML.

2.
Cancers (Basel) ; 15(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36831684

RESUMO

Survival of pediatric AML remains poor despite maximized myelosuppressive therapy. The pneumocystis jiroveci pneumonia (PJP)-treating medication atovaquone (AQ) suppresses oxidative phosphorylation (OXPHOS) and reduces AML burden in patient-derived xenograft (PDX) mouse models, making it an ideal concomitant AML therapy. Poor palatability and limited product formulations have historically limited routine use of AQ in pediatric AML patients. Patients with de novo AML were enrolled at two hospitals. Daily AQ at established PJP dosing was combined with standard AML therapy, based on the Medical Research Council backbone. AQ compliance, adverse events (AEs), ease of administration score (scale: 1 (very difficult)-5 (very easy)) and blood/marrow pharmacokinetics (PK) were collected during Induction 1. Correlative studies assessed AQ-induced apoptosis and effects on OXPHOS. PDX models were treated with AQ. A total of 26 patients enrolled (ages 7.2 months-19.7 years, median 12 years); 24 were evaluable. A total of 14 (58%) and 19 (79%) evaluable patients achieved plasma concentrations above the known anti-leukemia concentration (>10 µM) by day 11 and at the end of Induction, respectively. Seven (29%) patients achieved adequate concentrations for PJP prophylaxis (>40 µM). Mean ease of administration score was 3.8. Correlative studies with AQ in patient samples demonstrated robust apoptosis, OXPHOS suppression, and prolonged survival in PDX models. Combining AQ with chemotherapy for AML appears feasible and safe in pediatric patients during Induction 1 and shows single-agent anti-leukemic effects in PDX models. AQ appears to be an ideal concomitant AML therapeutic but may require intra-patient dose adjustment to achieve concentrations sufficient for PJP prophylaxis.

3.
Cancers (Basel) ; 14(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36551725

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous disease that accounts for ~20% of all childhood leukemias, and more than 40% of children with AML relapse within three years of diagnosis. Although recent efforts have focused on developing a precise medicine-based approach towards treating AML in adults, there remains a critical gap in therapies designed specifically for children. Here, we present ex vivo drug sensitivity profiles for children with de novo AML using an automated flow cytometry platform. Fresh diagnostic blood or bone marrow aspirate samples were screened for sensitivity in response to 78 dose conditions by measuring the reduction in leukemic blasts relative to the control. In pediatric patients treated with conventional chemotherapy, comprising cytarabine, daunorubicin and etoposide (ADE), ex vivo drug sensitivity results correlated with minimal residual disease (r = 0.63) and one year relapse-free survival (r = 0.70; AUROC = 0.94). In the de novo ADE analysis cohort of 13 patients, AML cells showed greater sensitivity to bortezomib/panobinostat compared with ADE, and comparable sensitivity between venetoclax/azacitidine and ADE ex vivo. Two patients showed a differential response between ADE and bortezomib/panobinostat, thus supporting the incorporation of ex vivo drug sensitivity testing in clinical trials to further evaluate the predictive utility of this platform in children with AML.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...