Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(16)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824628

RESUMO

Bipolar disorder is a chronic multifactorial psychiatric illness that affects the mood, cognition, and functioning of about 1-2% of the world's population. Its biological basis is unknown, and its treatment is unsatisfactory. The α1, α2, and α3 isoforms of the Na+, K+-ATPase, an essential membrane transporter, are vital for neuronal and glial function. The enzyme and its regulators, endogenous cardiac steroids like ouabain and marinobufagenin, are implicated in neuropsychiatric disorders, bipolar disorder in particular. Here, we address the hypothesis that the α isoforms of the Na+, K+-ATPase and its regulators are altered in the prefrontal cortex of bipolar disease patients. The α isoforms were determined by Western blot and ouabain and marinobufagenin by specific and sensitive immunoassays. We found that the α2 and α3 isoforms were significantly higher and marinobufagenin levels were significantly lower in the prefrontal cortex of the bipolar disease patients compared with those in the control. A positive correlation was found between the levels of the three α isoforms in all samples and between the α1 isoform and ouabain levels in the controls. These results are in accordance with the notion that the Na+, K+-ATPase-endogenous cardiac steroids system is involved in bipolar disease and suggest that it may be used as a target for drug development.


Assuntos
Transtorno Bipolar/metabolismo , Bufanolídeos/metabolismo , Ouabaína/metabolismo , Córtex Pré-Frontal/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Adulto , Transtorno Bipolar/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ATPase Trocadora de Sódio-Potássio/genética
2.
Int J Mol Sci ; 19(8)2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087257

RESUMO

Bipolar disorder (BD) is a severe and common chronic mental illness characterized by recurrent mood swings between depression and mania. The biological basis of the disease is poorly understood and its treatment is unsatisfactory. Although in past decades the "monoamine hypothesis" has dominated our understanding of both the pathophysiology of depressive disorders and the action of pharmacological treatments, recent studies focus on the involvement of additional neurotransmitters/neuromodulators systems and cellular processes in BD. Here, evidence for the participation of Na⁺, K⁺-ATPase and its endogenous regulators, the endogenous cardiac steroids (ECS), in the etiology of BD is reviewed. Proof for the involvement of brain Na⁺, K⁺-ATPase and ECS in behavior is summarized and it is hypothesized that ECS-Na⁺, K⁺-ATPase-induced activation of intracellular signaling participates in the mechanisms underlying BD. We propose that the activation of ERK, AKT, and NFκB, resulting from ECS-Na⁺, K⁺-ATPase interaction, modifies neuronal activity and neurotransmission which, in turn, participate in the regulation of behavior and BD. These observations suggest Na⁺, K⁺-ATPase-mediated signaling is a potential target for drug development for the treatment of BD.


Assuntos
Transtorno Bipolar/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Transtorno Bipolar/etiologia , Transtorno Bipolar/patologia , Humanos , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esteroides/metabolismo
3.
Sci Rep ; 5: 14695, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26456154

RESUMO

The pressure that develops between the two sides of a Donnan system is equal to the difference between the osmotic values of the two solutions, even though permeant ions may constitute a significant part of that difference. This is amply documented for the case of membranes that allow water movement through them by single molecules diffusing in isolation or in series through specific proteins (such as aquaporins). In this article, the development of pressure was analysed for a system in which membranes contain a few bulk aqueous pores that prevent charged polymers from entering them due to their size. It is shown analytically that the pressure that develops by the action of the electric field on the net charges in the pores is equal to the difference in the osmotic values of the solutions contributed by the permeant ions. Thus, the sum of the pressures that develop in the system due to the action of the electric field in the pores (a pushing force) and the concentration of the impermeant polymers at the interface (a sucking force), accounts for the total colloid osmotic pressure in these systems.


Assuntos
Membranas/metabolismo , Osmose/fisiologia , Pressão Osmótica/fisiologia , Água/metabolismo , Aquaporinas/metabolismo , Coloides , Difusão , Soluções , Eletricidade Estática
4.
J Appl Physiol (1985) ; 99(3): 1214-9, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15920101

RESUMO

Dietary phosphate has profound effects on growth and renal handling of the compound. On the basis of changes in growth rate and food intake, after alterations in phosphate load, our laboratory previously suggested that these effects are mediated by intestinal signals (Landsman A, Lichtstein D, Bacaner M, and Ilani A. Br J Nutr 86: 217-223, 2001). The aim of this study was to further evaluate the role of dietary phosphate on food intake and appetite and specific organ growth, and to test for the presence of a serum factor that may affect renal phosphate handling in phosphate-resupplied rats. The experimental design was based on a comparison between groups of rats receiving identical low-phosphate diets but drinking water containing either phosphate or chloride. We show that 1) changes in food intake after alterations in phosphate load occurred in parallel with variations in digestive system distention, suggesting that dietary phosphate has also a direct effect on appetite; 2) dietary phosphate-dependent growth has a specific effect on the growth of liver and epididymal fat; and 3) serum of rats supplied with phosphate contains a factor that inhibits sodium-dependent phosphate transport in a model of renal proximal tubule cells. Collectively, these observations are in accord with the hypothesis that factor(s) emanating from the digestive system in response to dietary phosphate load may be involved in growth, appetite and renal handling of phosphate.


Assuntos
Tecido Adiposo/crescimento & desenvolvimento , Apetite/fisiologia , Ingestão de Alimentos/fisiologia , Fígado/crescimento & desenvolvimento , Fosfatos/administração & dosagem , Fosfatos/metabolismo , Simportadores/sangue , Administração Oral , Animais , Masculino , Tamanho do Órgão/fisiologia , Especificidade de Órgãos , Ratos , Ratos Sprague-Dawley , Proteínas Cotransportadoras de Sódio-Fosfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA