Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Ann Clin Transl Neurol ; 11(5): 1097-1109, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38590028

RESUMO

OBJECTIVE: Voluntary upper limb movements are an ecologically important yet insufficiently explored digital-motor outcome domain for trials in degenerative ataxia. We extended and validated the trial-ready quantitative motor assessment battery "Q-Motor" for upper limb movements with clinician-reported, patient-focused, and performance outcomes of ataxia. METHODS: Exploratory single-center cross-sectional assessment in 94 subjects (46 cross-genotype ataxia patients; 48 matched controls), comprising five tasks measured by force transducer and/or position field: Finger Tapping, diadochokinesia, grip-lift, and-as novel implementations-Spiral Drawing, and Target Reaching. Digital-motor measures were selected if they discriminated from controls (AUC >0.7) and correlated-with at least one strong correlation (rho ≥0.6)-to the Scale for the Assessment and Rating of Ataxia (SARA), activities of daily living (FARS-ADL), and the Nine-Hole Peg Test (9HPT). RESULTS: Six movement features with 69 measures met selection criteria, including speed and variability in all tasks, stability in grip-lift, and efficiency in Target Reaching. The novel drawing/reaching tasks best captured impairment in dexterity (|rho9HPT| ≤0.81) and FARS-ADL upper limb items (|rhoADLul| ≤0.64), particularly by kinematic analysis of smoothness (SPARC). Target hit rate, a composite of speed and endpoint precision, almost perfectly discriminated ataxia and controls (AUC: 0.97). Selected measures in all tasks discriminated between mild, moderate, and severe impairment (SARA upper limb composite: 0-2/>2-4/>4-6) and correlated with severity in the trial-relevant mild ataxia stage (SARA ≤10, n = 20). INTERPRETATION: Q-Motor assessment captures multiple features of impaired upper limb movements in degenerative ataxia. Validation with key clinical outcome domains provides the basis for evaluation in longitudinal studies and clinical trial settings.


Assuntos
Ataxia , Extremidade Superior , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Extremidade Superior/fisiopatologia , Estudos Transversais , Adulto , Idoso , Ataxia/fisiopatologia , Ataxia/diagnóstico , Desempenho Psicomotor/fisiologia , Atividade Motora/fisiologia , Índice de Gravidade de Doença
2.
Mov Disord ; 39(5): 788-797, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38419144

RESUMO

BACKGROUND: With disease-modifying drugs in reach for cerebellar ataxias, fine-grained digital health measures are highly warranted to complement clinical and patient-reported outcome measures in upcoming treatment trials and treatment monitoring. These measures need to demonstrate sensitivity to capture change, in particular in the early stages of the disease. OBJECTIVE: Our aim is to unravel gait measures sensitive to longitudinal change in the-particularly trial-relevant-early stage of spinocerebellar ataxia type 2 (SCA2). METHODS: We performed a multicenter longitudinal study with combined cross-sectional and 1-year interval longitudinal analysis in early-stage SCA2 participants (n = 23, including nine pre-ataxic expansion carriers; median, ATXN2 CAG repeat expansion 38 ± 2; median, Scale for the Assessment and Rating of Ataxia [SARA] score 4.8 ± 4.3). Gait was assessed using three wearable motion sensors during a 2-minute walk, with analyses focused on gait measures of spatio-temporal variability that have shown sensitivity to ataxia severity (eg, lateral step deviation). RESULTS: We found significant changes for gait measures between baseline and 1-year follow-up with large effect sizes (lateral step deviation P = 0.0001, effect size rprb = 0.78), whereas the SARA score showed no change (P = 0.67). Sample size estimation indicates a required cohort size of n = 43 to detect a 50% reduction in natural progression. Test-retest reliability and minimal detectable change analysis confirm the accuracy of detecting 50% of the identified 1-year change. CONCLUSIONS: Gait measures assessed by wearable sensors can capture natural progression in early-stage SCA2 within just 1 year-in contrast to a clinical ataxia outcome. Lateral step deviation represents a promising outcome measure for upcoming multicenter interventional trials, particularly in the early stages of cerebellar ataxia. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Progressão da Doença , Ataxias Espinocerebelares , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Ataxias Espinocerebelares/fisiopatologia , Ataxias Espinocerebelares/genética , Estudos Longitudinais , Estudos Transversais , Marcha/fisiologia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/diagnóstico , Ataxina-2/genética
3.
Cerebellum ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015365

RESUMO

Smartphone sensors are used increasingly in the assessment of ataxias. To date, there is no specific consensus guidance regarding a priority set of smartphone sensor measurements, or standard assessment criteria that are appropriate for clinical trials. As part of the Ataxia Global Initiative Digital-Motor Biomarkers Working Group (AGI WG4), aimed at evaluating key ataxia clinical domains (gait/posture, upper limb, speech and oculomotor assessments), we provide consensus guidance for use of internal smartphone sensors to assess key domains. Guidance was developed by means of a literature review and a two stage Delphi study conducted by an Expert panel, which surveyed members of AGI WG4, representing clinical, research, industry and patient-led experts, and consensus meetings by the Expert panel to agree on standard criteria and map current literature to these criteria. Seven publications were identified that investigated ataxias using internal smartphone sensors. The Delphi 1 survey ascertained current practice, and systems in use or under development. Wide variations in smartphones sensor use for assessing ataxia were identified. The Delphi 2 survey identified seven measures that were strongly endorsed as priorities in assessing 3/4 domains, namely gait/posture, upper limb, and speech performance. The Expert panel recommended 15 standard criteria to be fulfilled in studies. Evaluation of current literature revealed that none of the studies met all criteria, with most being early-phase validation studies. Our guidance highlights the importance of consensus, identifies priority measures and standard criteria, and will encourage further research into the use of internal smartphone sensors to measure ataxia digital-motor biomarkers.

4.
Cerebellum ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37955812

RESUMO

With disease-modifying drugs on the horizon for degenerative ataxias, ecologically valid, finely granulated, digital health measures are highly warranted to augment clinical and patient-reported outcome measures. Gait and balance disturbances most often present as the first signs of degenerative cerebellar ataxia and are the most reported disabling features in disease progression. Thus, digital gait and balance measures constitute promising and relevant performance outcomes for clinical trials.This narrative review with embedded consensus will describe evidence for the sensitivity of digital gait and balance measures for evaluating ataxia severity and progression, propose a consensus protocol for establishing gait and balance metrics in natural history studies and clinical trials, and discuss relevant issues for their use as performance outcomes.

6.
J Neuroeng Rehabil ; 20(1): 90, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454121

RESUMO

BACKGROUND: In Hereditary Spastic Paraplegia (HSP) type 4 (SPG4) a length-dependent axonal degeneration in the cortico-spinal tract leads to progressing symptoms of hyperreflexia, muscle weakness, and spasticity of lower extremities. Even before the manifestation of spastic gait, in the prodromal phase, axonal degeneration leads to subtle gait changes. These gait changes - depicted by digital gait recording - are related to disease severity in prodromal and early-to-moderate manifest SPG4 participants. METHODS: We hypothesize that dysfunctional neuro-muscular mechanisms such as hyperreflexia and muscle weakness explain these disease severity-related gait changes of prodromal and early-to-moderate manifest SPG4 participants. We test our hypothesis in computer simulation with a neuro-muscular model of human walking. We introduce neuro-muscular dysfunction by gradually increasing sensory-motor reflex sensitivity based on increased velocity feedback and gradually increasing muscle weakness by reducing maximum isometric force. RESULTS: By increasing hyperreflexia of plantarflexor and dorsiflexor muscles, we found gradual muscular and kinematic changes in neuro-musculoskeletal simulations that are comparable to subtle gait changes found in prodromal SPG4 participants. CONCLUSIONS: Predicting kinematic changes of prodromal and early-to-moderate manifest SPG4 participants by gradual alterations of sensory-motor reflex sensitivity allows us to link gait as a directly accessible performance marker to emerging neuro-muscular changes for early therapeutic interventions.


Assuntos
Paraplegia , Reflexo Anormal , Humanos , Simulação por Computador , Marcha , Debilidade Muscular , Paresia
8.
Cerebellum ; 22(3): 394-430, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35414041

RESUMO

The aim of this consensus paper is to discuss the roles of the cerebellum in human gait, as well as its assessment and therapy. Cerebellar vermis is critical for postural control. The cerebellum ensures the mapping of sensory information into temporally relevant motor commands. Mental imagery of gait involves intrinsically connected fronto-parietal networks comprising the cerebellum. Muscular activities in cerebellar patients show impaired timing of discharges, affecting the patterning of the synergies subserving locomotion. Ataxia of stance/gait is amongst the first cerebellar deficits in cerebellar disorders such as degenerative ataxias and is a disabling symptom with a high risk of falls. Prolonged discharges and increased muscle coactivation may be related to compensatory mechanisms and enhanced body sway, respectively. Essential tremor is frequently associated with mild gait ataxia. There is growing evidence for an important role of the cerebellar cortex in the pathogenesis of essential tremor. In multiple sclerosis, balance and gait are affected due to cerebellar and spinal cord involvement, as a result of disseminated demyelination and neurodegeneration impairing proprioception. In orthostatic tremor, patients often show mild-to-moderate limb and gait ataxia. The tremor generator is likely located in the posterior fossa. Tandem gait is impaired in the early stages of cerebellar disorders and may be particularly useful in the evaluation of pre-ataxic stages of progressive ataxias. Impaired inter-joint coordination and enhanced variability of gait temporal and kinetic parameters can be grasped by wearable devices such as accelerometers. Kinect is a promising low cost technology to obtain reliable measurements and remote assessments of gait. Deep learning methods are being developed in order to help clinicians in the diagnosis and decision-making process. Locomotor adaptation is impaired in cerebellar patients. Coordinative training aims to improve the coordinative strategy and foot placements across strides, cerebellar patients benefiting from intense rehabilitation therapies. Robotic training is a promising approach to complement conventional rehabilitation and neuromodulation of the cerebellum. Wearable dynamic orthoses represent a potential aid to assist gait. The panel of experts agree that the understanding of the cerebellar contribution to gait control will lead to a better management of cerebellar ataxias in general and will likely contribute to use gait parameters as robust biomarkers of future clinical trials.


Assuntos
Ataxia Cerebelar , Doenças Cerebelares , Tremor Essencial , Humanos , Marcha Atáxica/etiologia , Tremor , Consenso , Ataxia Cerebelar/complicações , Ataxia/complicações , Doenças Cerebelares/complicações , Marcha/fisiologia
9.
Sensors (Basel) ; 22(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36559967

RESUMO

In this manuscript, we describe the soft- and hardware architecture as well as the implementation of a modern Internet of Medical Things (IoMT) system for sensor-assisted telepsychotherapy. It enables telepsychotherapy sessions in which the patient exercises therapy-relevant behaviors in their home environment under the remote supervision of the therapist. Wearable sensor information (electrocardiogram (ECG), movement sensors, and eye tracking) is streamed in real time to the therapist to deliver objective information about specific behavior-triggering situations and the stress level of the patients. We describe the IT infrastructure of the system which uses open standards such as WebRTC and OpenID Connect (OIDC). We also describe the system's security concept, its container-based deployment, and demonstrate performance analyses. The system is used in the ongoing study SSTeP-KiZ (smart sensor technology in telepsychotherapy for children and adolescents with obsessive-compulsive disorder) and shows sufficient technical performance.


Assuntos
Psicoterapia , Telemedicina , Adolescente , Criança , Humanos , Comunicação , Internet das Coisas , Software , Computadores
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2976-2982, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085677

RESUMO

In modern psychotherapy, digital health technology offers advanced and personalized therapy options, increasing availability as well as ecological validity. These aspects have proven to be highly relevant for children and adolescents with obsessive-compulsive disorder (OCD). Exposure and Response Prevention therapy, which is the state-of-the-art treatment for OCD, builds on the reconstruction of everyday life exposure to anxious situations. However, while compulsive behavior pre-dominantly occurs in home environments, exposure situations during therapy are limited to clinical settings. Telemedical treatment allows to shift from this limited exposure reconstruction to exposure situations in real life. In the SSTeP KiZ study (smart sensor technology in telepsychotherapy for children and adolescents with OCD), we combine video therapy with wearable sensors delivering physiological and behavioral measures to objectively determine the stress level of patients. The setup allows to gain information from exposure to stress in a realistic environment both during and outside of therapy sessions. In a first pilot study, we explored the sensitivity of individual sensor modalities to different levels of stress and anxiety. For this, we captured the obsessive-compulsive behavior of five adolescents with an ECG chest belt, inertial sensors capturing hand movements, and an eye tracker. Despite their prototypical nature, our results deliver strong evidence that the examined sensor modalities yield biomarkers allowing for personalized detection and quantification of stress and anxiety. This opens up future possibilities to evaluate the severity of individual compulsive behavior based on multi-variate state classification in real-life situations. Clinical Relevance- Our results demonstrate the potential for efficient personalized psychotherapy by monitoring physiological and behavioral changes with multiple sensor modalities in ecologically valid real-life scenarios.


Assuntos
Transtorno Obsessivo-Compulsivo , Telemedicina , Adolescente , Transtornos de Ansiedade , Proteínas de Ciclo Celular , Criança , Humanos , Transtorno Obsessivo-Compulsivo/diagnóstico , Transtorno Obsessivo-Compulsivo/terapia , Projetos Piloto , Psicoterapia
11.
J Clin Exp Neuropsychol ; 44(7): 478-486, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36111811

RESUMO

INTRODUCTION: Hemiparetic stroke patients with so-called "pusher syndrome" (synonyms: contraversive lateropulsion, contraversive pushing) use their non-paretic extremities to push toward their paralyzed side and actively resist external posture correction. The disorder is associated with a distorted perception of postural vertical combined with a maintained, or little deviating perception of visual upright. With the aim of reducing this mismatch, and thus reducing contraversive lateropulsion, we manipulated the orientation of visual input in a virtual reality setup. METHOD: We presented healthy subjects and an acute stroke patient with severe pusher syndrome a 3D visual scene that was either upright or tilted in roll plane by 20°. By moving the sitting participants in roll plane to the left and right, we assessed the occurrence of contraversive lateropulsion, namely the active resistance to external posture manipulation. RESULTS: With the 3D visual scene oriented upright, the patient with pusher syndrome showed the typical active resistance against tilts toward the ipsilesional side. He used his non-paretic arm to block the examiner's attempt to move the body axis toward that side. With the visual scene tilted to the ipsiversive left, his pathological resistance was significantly reduced. Statistically, the tolerated body tilt angles no longer differed from those of healthy subjects. CONCLUSIONS: We conclude that even short presentations of tilted 3D visual input can reduce symptoms of severe contraversive lateropulsion. The technique provides potential for a new treatment method of pusher syndrome and offers a simple, straightforward approach that can be effortlessly integrated in clinical practice. TRIAL REGISTRATION: German Clinical Trials Register (DRKS00026700).


Assuntos
Paresia , Acidente Vascular Cerebral , Masculino , Humanos , Paresia/complicações , Paresia/diagnóstico , Postura , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Equilíbrio Postural
12.
Mov Disord ; 37(12): 2417-2426, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054444

RESUMO

BACKGROUND: In hereditary spastic paraplegia type 4 (SPG4), subclinical gait changes might occur years before patients realize gait disturbances. The prodromal phase of neurodegenerative disease is of particular interest to halt disease progression by future interventions before impairment has manifested. OBJECTIVE: The objective of this study was to identify specific movement abnormalities before the manifestation of gait impairment and quantify disease progression in the prodromal phase. METHODS: Seventy subjects participated in gait assessment, including 30 prodromal SPAST pathogenic variant carriers, 17 patients with mild-to-moderate manifest SPG4, and 23 healthy control subjects. An infrared-camera-based motion capture system assessed gait to analyze features such as range of motion and continuous angle trajectories. Those features were correlated with disease severity as assessed by the Spastic Paraplegia Rating Scale, neurofilament light chain as a fluid biomarker indicating neurodegeneration, and motor-evoked potentials. RESULTS: Compared with healthy control subjects, we found an altered gait pattern in prodromal pathogenic variant carriers during the swing phase in the segmental angle of the foot (Dunn's post hoc test, q = 3.1) and heel ground clearance (q = 2.8). Furthermore, range of motion of segmental angle was reduced for the foot (q = 3.3). These changes occurred in prodromal pathogenic variant carriers without quantified leg spasticity in clinical examination. Gait features correlated with neurofilament light chain levels, central motor conduction times of motor-evoked potentials, and Spastic Paraplegia Rating Scale score. CONCLUSIONS: Gait analysis can quantify changes in prodromal and mild-to-moderate manifest SPG4 patients. Thus, gait features constitute promising motor biomarkers characterizing the subclinical progression of spastic gait and might help to evaluate interventions in early disease stages. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doenças Neurodegenerativas , Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia , Marcha/fisiologia , Progressão da Doença , Espastina
13.
Mov Disord ; 37(11): 2295-2301, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36043376

RESUMO

Measures of step variability and body sway during gait have shown to correlate with clinical ataxia severity in several cross-sectional studies. However, to serve as a valid progression biomarker, these gait measures have to prove their sensitivity to robustly capture longitudinal change, ideally within short time frames (eg, 1 year). We present the first multicenter longitudinal gait analysis study in spinocerebellar ataxias. We performed a combined cross-sectional (n = 28) and longitudinal (1-year interval, n = 17) analysis in Spinocerebellar Ataxia type 3 subjects (including seven preataxic mutation carriers). Longitudinal analysis showed significant change in gait measures between baseline and 1-year follow-up, with high effect sizes (stride length variability: P = 0.01, effect size rprb  = 0.66; lateral sway: P = 0.007, rprb  = 0.73). Sample size estimation for lateral sway indicates a required cohort size of n = 43 for detecting a 50% reduction of natural progression, compared with n = 240 for the clinical ataxia score Scale for the Assessment and Rating of Ataxia (SARA). These measures thus present promising motor biomarkers for upcoming interventional studies. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Cerebelar , Doença de Machado-Joseph , Humanos , Doença de Machado-Joseph/diagnóstico , Estudos Transversais , Progressão da Doença , Marcha , Ataxia , Biomarcadores
14.
Exp Neurol ; 355: 114119, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35605667

RESUMO

Pharmacological targeting of neuroinflammation in distinct models of genetically mediated disorders of the central nervous system (CNS) has been shown to attenuate disease outcome significantly. These include mouse models mimicking distinct subtypes of neuronal ceroid lipofuscinoses (NCL, CLN diseases) as well as hereditary spastic paraplegia type 2 (HSP/SPG2). We here show in a model of another, complicated HSP form (SPG11) that there is neuroinflammation in distinct compartments of the diseased CNS. Using a proof-of-principle experiment, we provide evidence that genetically targeting the adaptive immune system dampens disease progression including gait disturbance, demonstrating a pathogenic impact of neuroinflammation. Translating these studies into a clinically applicable approach, we show that the established immunomodulators fingolimod and teriflunomide significantly attenuate the neurodegenerative phenotype and improve gait performance in the SPG11 model, even when applied relatively late during disease progression. Particularly abnormalities in gait coordination, representing ataxia, could be attenuated, while features indicative of reduced strength during walking did not respond to treatment. Our study identifies neuroinflammation by the adaptive immune system as a robust and targetable disease amplifier in a mouse model of SPG11 and may thus pave the way for a translational approach in humans implicating approved immunomodulators.


Assuntos
Paraplegia Espástica Hereditária , Animais , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Progressão da Doença , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Camundongos , Mutação , Proteínas/genética , Paraplegia Espástica Hereditária/tratamento farmacológico , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/patologia , Linfócitos T/patologia
15.
Mov Disord ; 37(5): 1047-1058, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35067979

RESUMO

BACKGROUND: Clinical and regulatory acceptance of upcoming molecular treatments in degenerative ataxias might greatly benefit from ecologically valid endpoints that capture change in ataxia severity in patients' real life. OBJECTIVES: This longitudinal study aimed to unravel quantitative motor biomarkers in degenerative ataxias in real-life turning movements that are sensitive for changes both longitudinally and at the preataxic stage. METHODS: Combined cross-sectional (n = 30) and longitudinal (n = 14, 1-year interval) observational study in degenerative cerebellar disease (including eight preataxic mutation carriers) compared to 23 healthy controls. Turning movements were assessed by three body-worn inertial sensors in three conditions: (1) instructed laboratory assessment, (2) supervised free walking, and (3) unsupervised real-life movements. RESULTS: Measures that quantified dynamic balance during turning-lateral velocity change (LVC) and outward acceleration-but not general turning measures such as speed, allowed differentiating ataxic against healthy subjects in real life (effect size δ = 0.68), with LVC also differentiating preataxic against healthy subjects (δ = 0.53). LVC was highly correlated with clinical ataxia severity (scale for the assessment and rating of ataxia [SARA] score, effect size ρ = 0.79) and patient reported balance confidence (activity-specific balance confidence scale [ABC] score, ρ = 0.66). Moreover, LVC in real life-but not general turning measures or the SARA score-allowed detecting significant longitudinal change in 1-year follow-up with high effect size (rprb  = 0.66). CONCLUSIONS: Measures of turning allow capturing specific changes of dynamic balance in degenerative ataxia in real life, with high sensitivity to longitudinal differences in ataxia severity and to the preataxic stage. They thus present promising ecologically valid motor biomarkers, even in the highly treatment-relevant early stages of degenerative cerebellar disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Ataxia , Biomarcadores , Estudos Transversais , Humanos , Estudos Longitudinais , Ataxias Espinocerebelares/genética
16.
Hum Brain Mapp ; 42(6): 1641-1656, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33410575

RESUMO

Several diffusion tensor imaging studies reveal that white matter (WM) lesions are common in children suffering from benign cerebellar tumours who are treated with surgery only. The clinical implications of WM alterations that occur as a direct consequence of cerebellar disease have not been thoroughly studied. Here, we analysed structural and diffusion imaging data from cerebellar patients with chronic surgical lesions after resection for benign cerebellar tumours. We aimed to elucidate the impact of focal lesions of the cerebellum on WM integrity across the entire brain, and to investigate whether WM deficits were associated with behavioural impairment in three different motor tasks. Lesion symptom mapping analysis suggested that lesions in critical cerebellar regions were related to deficits in savings during an eyeblink conditioning task, as well as to deficits in motor action timing. Diffusion imaging analysis of cerebellar WM indicated that better behavioural performance was associated with higher fractional anisotropy (FA) in the superior cerebellar peduncle, cerebellum's main outflow path. Moreover, voxel-wise analysis revealed a global pattern of WM deficits in patients within many cerebral WM tracts critical for motor and non-motor function. Finally, we observed a positive correlation between FA and savings within cerebello-thalamo-cortical pathways in patients but not in controls, showing that saving effects partly depend on extracerebellar areas, and may be recruited for compensation. These results confirm that the cerebellum has extended connections with many cerebral areas involved in motor/cognitive functions, and the observed WM changes likely contribute to long-term clinical deficits of posterior fossa tumour survivors.


Assuntos
Sobreviventes de Câncer , Doenças Cerebelares/patologia , Doenças Cerebelares/cirurgia , Disfunção Cognitiva/fisiopatologia , Leucoencefalopatias/patologia , Leucoencefalopatias/fisiopatologia , Procedimentos Neurocirúrgicos/efeitos adversos , Desempenho Psicomotor/fisiologia , Adolescente , Adulto , Doenças Cerebelares/diagnóstico por imagem , Neoplasias Cerebelares/cirurgia , Disfunção Cognitiva/etiologia , Condicionamento Clássico/fisiologia , Imagem de Tensor de Difusão , Feminino , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/etiologia , Masculino , Atividade Motora/fisiologia , Adulto Jovem
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3642-3648, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018791

RESUMO

In this study we evaluate the application of video-based markerless motion tracking based on deep neural networks for the analysis of ataxia-specific movement abnormalities in rodent models of cerebellar ataxia. Based on a small amount (<100) of manually labeled video frames, markerless motion tracking enabled the extraction of movement trajectories and parameters characterizing ataxia-specific movement abnormalities. In the first experiment, we analyzed videos of 6 shaker and 4 wildtype rats and were able to reproduce thê5 Hz tremor frequency in the shaker rat without the usage of a force plate. In the second experiment, we investigated a spinocerebellar ataxia type 3 (SCA3) mouse model (6 mice aged 3 months and 3 mice aged 9 months) in a beam-balancing task. By establishing a parameter for the assessment of rhythmicity of gait (RoG), we not only found a significantly higher RoG in wildtype mice compared to affected SCA3 mice aged 9 months, but were also able to reveal a significantly lower than typical RoG in SCA3 mice aged 3 months which exhibit no abnormalities in visual inspection. These prototypical results suggest the capability of the presented methods for the application in upcoming therapeutic intervention trials to identify subtle changes in movement behavior.


Assuntos
Ataxia Cerebelar , Transtornos Motores , Animais , Ataxia , Camundongos , Redes Neurais de Computação , Ratos , Roedores
18.
Neurology ; 95(9): e1199-e1210, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611635

RESUMO

OBJECTIVES: With disease-modifying drugs on the horizon for degenerative ataxias, ecologically valid motor biomarkers are highly warranted. In this observational study, we aimed to unravel and validate markers of ataxic gait in real life by using wearable sensors. METHODS: We assessed gait characteristics of 43 patients with degenerative cerebellar disease (Scale for the Assessment and Rating of Ataxia [SARA] 9.4 ± 3.9) compared with 35 controls by 3 body-worn inertial sensors in 3 conditions: (1) laboratory-based walking; (2) supervised free walking; (3) real-life walking during everyday living (subgroup n = 21). Movement analysis focused on measures of spatiotemporal step variability and movement smoothness. RESULTS: A set of gait variability measures was identified that allowed us to consistently identify ataxic gait changes in all 3 conditions. Lateral step deviation and a compound measure of spatial step variability categorized patients vs controls with a discrimination accuracy of 0.86 in real life. Both were highly correlated with clinical ataxia severity (effect size ρ = 0.76). These measures allowed detecting group differences even for patients who differed only 1 point in the clinical SARAposture&gait subscore, with highest effect sizes for real-life walking (d = 0.67). CONCLUSIONS: We identified measures of ataxic gait that allowed us not only to capture the gait variability inherent in ataxic gait in real life, but also to demonstrate high sensitivity to small differences in disease severity, with the highest effect sizes in real-life walking. They thus represent promising candidates for motor markers for natural history and treatment trials in ecologically valid contexts. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that a set of gait variability measures, even if accessed in real life, correlated with the clinical severity of ataxia in patients with degenerative cerebellar disease.


Assuntos
Análise da Marcha/métodos , Ataxias Espinocerebelares/fisiopatologia , Dispositivos Eletrônicos Vestíveis , Adulto , Idoso , Ataxia Telangiectasia/fisiopatologia , Feminino , Análise da Marcha/instrumentação , Humanos , Masculino , Pessoa de Meia-Idade , Equilíbrio Postural , Índice de Gravidade de Doença , Caminhada , Adulto Jovem
19.
Neurology ; 95(2): e194-e205, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32527970

RESUMO

OBJECTIVE: To determine whether objective and quantitative assessment of dysarthria and dysphagia in spinocerebellar ataxia type 2 (SCA2), specifically at pre-ataxic and early disease phases, can act as sensitive disease markers. METHODS: Forty-six individuals (16 with pre-ataxic SCA2, 14 with early-stage ataxic SCA2, and 16 healthy controls) were recruited in Holguin, Cuba. All participants underwent a comprehensive battery of assessments including objective acoustic analysis, clinician-derived ratings of speech function and swallowing, and quality of life assessments of swallowing. RESULTS: Reduced speech agility manifest at the pre-ataxic stage was observed during diadochokinetic tasks, with the magnitude of speech deficit augmented in the early ataxic stage. Speech rate was slower in early-stage ataxic SCA2 compared with pre-ataxic SCA2 and healthy controls. Reduced speech agility and speech rate correlated with disease severity and time to ataxia onset, verifying that speech deficits occur prior to ataxia onset and increase in severity as the disease progresses. Whereas dysphagia was observed in both pre-ataxic and ataxic SCA2, it was not associated with swallowing-related quality of life, disease severity, or time to ataxia onset. CONCLUSIONS: Speech and swallowing deficits appear sensitive to disease progression in early-stage SCA2, with syllabic rate a viable marker. Findings provide insight into mechanisms of disease progression in early-stage SCA2, signaling an opportunity for stratifying early-stage SCA2 and identifying salient markers of disease onset as well as outcome measures in future early-stage therapeutic studies.


Assuntos
Transtornos de Deglutição/etiologia , Transtornos de Deglutição/fisiopatologia , Distúrbios da Fala/etiologia , Distúrbios da Fala/fisiopatologia , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/fisiopatologia , Adolescente , Adulto , Biomarcadores , Transtornos de Deglutição/psicologia , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Testes de Articulação da Fala , Distúrbios da Fala/psicologia , Ataxias Espinocerebelares/psicologia , Adulto Jovem
20.
Artigo em Inglês | MEDLINE | ID: mdl-32373601

RESUMO

Human movement is generated by a dynamic interplay between the nervous system, the biomechanical structures, and the environment. To investigate this interaction, we propose a neuro-musculoskeletal model of human goal-directed arm movements. Using this model, we simulated static perturbations of the inertia and damping properties of the arm, as well as dynamic torque perturbations for one-degree-of freedom movements around the elbow joint. The controller consists of a feed-forward motor command and feedback based on muscle fiber length and contraction velocity representing short-latency (25 ms) or long-latency (50 ms) stretch reflexes as the first neuronal responses elicited by an external perturbation. To determine the open-loop control signal, we parameterized the control signal resulting in a piecewise constant stimulation over time for each muscle. Interestingly, such an intermittent open-loop signal results in a smooth movement that is close to experimental observations. So, our model can generate the unperturbed point-to-point movement solely by the feed-forward command. The feedback only contributed to the stimulation in perturbed movements. We found that the relative contribution of this feedback is small compared to the feed-forward control and that the characteristics of the musculoskeletal system create an immediate and beneficial reaction to the investigated perturbations. The novelty of these findings is (1) the reproduction of static as well as dynamic perturbation experiments in one neuro-musculoskeletal model with only one set of basic parameters. This allows to investigate the model's neuro-muscular response to the perturbations that-at least to some degree-represent stereotypical interactions with the environment; (2) the demonstration that in feed-forward driven movements the muscle characteristics generate a mechanical response with zero-time delay which helps to compensate for the perturbations; (3) that this model provides enough biomechanical detail to allow for the prediction of internal forces, including joint loads and muscle-bone contact forces which are relevant in ergonomics and for the development of assistive devices but cannot be observed in experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...